Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneousl...The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.展开更多
The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators beco...The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.展开更多
Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first fo...Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first formulates a mathematical model to theorize and operationalize the SDO problem and then identifies optimal so- lutions to solve the SDO problem. In the solutions, the success rate of the combat task is maximized, whereas the execution time of the task and the cost of changes in the system structure are mini- mized. The presented optimized algorithm generates an optimal solution without the need to check the entire search space. A novel method is finally proposed based on the combination of heuristic method and genetic algorithm (HGA), as well as the combination of heuristic method and particle swarm optimization (HPSO). Experi- ment results show that the HPSO method generates solutions faster than particle swarm optimization (PSO) and genetic algo- rithm (GA) in terms of execution time and performs more efficiently than the heuristic method in terms of determining the best solution.展开更多
The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydrau...The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydraulic bumper is established; Based on this model thestructural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result showsthat the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamicperformance of the hydraulic bumper is improved through parameter optimization.展开更多
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe...Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.展开更多
At present, people are paying more and more attention to protecting the environment, and cities are paying more and more attention to ecology in the process of construction. In the construction of landscape architectu...At present, people are paying more and more attention to protecting the environment, and cities are paying more and more attention to ecology in the process of construction. In the construction of landscape architecture, it can help the city form a relatively complete ecosystem, which can better promote the sustainable development of the city and improve the quality of the urban environment. However, due to the differences between the characteristics related to natural conditions, seasonality and quality requirements, the quality of landscape architecture construction cannot be reasonably standardized. Therefore, from the beginning of construction, we should pay attention to the construction quality, ensure that every construction process meets the requirements of technical standards, and ensure the smooth progress of garden construction.展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose...Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time.展开更多
Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey spac...Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey space:overhead grey space and canopy grey space.The spatial form indexes that greatly affect the ecological performance of architectural grey space such as ventilation,shading,etc.are discussed,and two passive spatial form indexes of spatial scale and location orientation are studied.According to the research of related scholars and literature summary,the optimization strategies for passive form design of architectural grey space based on climate adaptability are put forward,which will provide a reference for the climate adaptive design of architectural grey space,and helps to improve the outdoor thermal environment from the micro scale and create a better living environment.展开更多
With the rapid development of machine learning,the prediction of the performance of acoustic meta-materials using neural networks is replacing the traditional experiment-based testing methods.In this paper,a Gini impu...With the rapid development of machine learning,the prediction of the performance of acoustic meta-materials using neural networks is replacing the traditional experiment-based testing methods.In this paper,a Gini impurity-based artificial neural network structural optimizer(GIASO)is proposed to optimize the neural network structure,and the effects of five different initialization algorithms on the model performance and struc-ture optimization are investigated.Two physically guided models with additional resonant frequencies and sound transmission loss formula are achieved to further improve the prediction accuracy of the model.The results show that GIASO utilizing the gray wolf optimizer as the initialization method can significantly improve the prediction performance of the model.Simultaneously,the physical guidance model with additional resonant frequencies has the best performance and can better predict the edge data points.Eventually,the effect of each input parameter on the sound transmission loss is explained by combining sensitivity analysis and theoretical formulation.展开更多
The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectivel...The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectively promote economic development. Green building technology first requires the use of environmental protection building materials, improve the utilization of resources, the application of green energy-saving construction technology, to achieve the effect of energy saving and emission reduction, green building technology is expected to achieve considerable ecological benefits. Next, the article discusses the optimization and combination of green building technology in architectural design.展开更多
This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is ...This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.展开更多
With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integ...With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.展开更多
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis...To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.展开更多
A new efficient coupling relationship description method has been developed to provide an automated and visualized way to multidisciplinary design optimization (MDO) modeling and solving. The disciplinary relation mat...A new efficient coupling relationship description method has been developed to provide an automated and visualized way to multidisciplinary design optimization (MDO) modeling and solving. The disciplinary relation matrix (DRM) is proposed to describe the coupling relationship according to disciplinary input/output variables, and the MDO definition has been reformulated to adopt the new interfaces. Based on these, a universal MDO solving procedure is proposed to establish an automated and efficient way for MDO modeling and solving. Through a simple and convenient initial configuration, MDO problems can be solved using any of available MDO architectures with no further effort. Several examples are used to verify the proposed MDO modeling and solving process. Result shows that the DRM method has the ability to simplify and automate the MDO procedure, and the related MDO framework can evaluate the MDO problem automatically and efficiently.展开更多
The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network t...The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.展开更多
Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the ...Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks(DNNs).However,NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS,and training DNNs is computationally intensive.To solve this major limitation of NAS,improving the computational efficiency is essential in the design of NAS.However,a systematic overview of computationally efficient NAS(CE-NAS)methods still lacks.To fill this gap,we provide a comprehensive survey of the state-of-the-art on CE-NAS by categorizing the existing work into proxy-based and surrogate-assisted NAS methods,together with a thorough discussion of their design principles and a quantitative comparison of their performances and computational complexities.The remaining challenges and open research questions are also discussed,and promising research topics in this emerging field are suggested.展开更多
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
文摘The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.
基金National Natural Science Foundation of China (50675009) International Science & Technology Cooperation Program of China (2010DFA72540)
文摘The optional types of power source and actuator in the aircraft are more and more diverse due to fast development in more electric technology, which makes the combinations of different power sources and actuators become extremely complex in the architecture optimization process of airborne actuation system. The traditional "trial and error" method cannot satisfy the design demands. In this paper, firstly, the composition of more electric aircraft (MEA) flight control actuation system (FCAS) is introduced, and the possible architecture quantity is calculated. Secondly, the evaluation criteria of FCAS architecture with respect to safe reliability, weight and efficiency are proposed, and the evaluation criteria values are calculated in the case that each control surface adopts the same actuator configuration. Finally, the optimization results of MEA FCAS architecture are obtained by applying genetic algorithm (GA). Compared to the traditional actuation system architecture, which only adopts servo valve controlled hydraulic actuators, the weight of the optimized more electric actuation system architecture can be reduced by 6%, and the efficiency can be improved by 30% based on the safe reliability requirements.
基金supported by the National Natural Science Foundation of China(71171197)the National Basic Research Program of China(973 Program)(613154)
文摘Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first formulates a mathematical model to theorize and operationalize the SDO problem and then identifies optimal so- lutions to solve the SDO problem. In the solutions, the success rate of the combat task is maximized, whereas the execution time of the task and the cost of changes in the system structure are mini- mized. The presented optimized algorithm generates an optimal solution without the need to check the entire search space. A novel method is finally proposed based on the combination of heuristic method and genetic algorithm (HGA), as well as the combination of heuristic method and particle swarm optimization (HPSO). Experi- ment results show that the HPSO method generates solutions faster than particle swarm optimization (PSO) and genetic algo- rithm (GA) in terms of execution time and performs more efficiently than the heuristic method in terms of determining the best solution.
文摘The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydraulic bumper is established; Based on this model thestructural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result showsthat the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamicperformance of the hydraulic bumper is improved through parameter optimization.
基金supported by ZTE Industry-University-Institute Cooperation Funds,the Natural Science Foundation of Shanghai under Grant No.23ZR1407300the National Natural Science Foundation of China un⁃der Grant No.61771147.
文摘Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.
文摘At present, people are paying more and more attention to protecting the environment, and cities are paying more and more attention to ecology in the process of construction. In the construction of landscape architecture, it can help the city form a relatively complete ecosystem, which can better promote the sustainable development of the city and improve the quality of the urban environment. However, due to the differences between the characteristics related to natural conditions, seasonality and quality requirements, the quality of landscape architecture construction cannot be reasonably standardized. Therefore, from the beginning of construction, we should pay attention to the construction quality, ensure that every construction process meets the requirements of technical standards, and ensure the smooth progress of garden construction.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
基金The authors received funding source for this research activity under Multi-Disciplinary Research(MDR)Grant Vot H483 from Research Management Centre(RMC)office,Universiti Tun Hussein Onn Malaysia(UTHM).
文摘Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time.
基金General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043)。
文摘Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey space:overhead grey space and canopy grey space.The spatial form indexes that greatly affect the ecological performance of architectural grey space such as ventilation,shading,etc.are discussed,and two passive spatial form indexes of spatial scale and location orientation are studied.According to the research of related scholars and literature summary,the optimization strategies for passive form design of architectural grey space based on climate adaptability are put forward,which will provide a reference for the climate adaptive design of architectural grey space,and helps to improve the outdoor thermal environment from the micro scale and create a better living environment.
基金the Science and Technology Commission of Shanghai Municipality(No.19030501100)the Technical Service Platform for Vibration and Noise Testing and Control of New Energy Vehicles(No.18DZ2295900)。
文摘With the rapid development of machine learning,the prediction of the performance of acoustic meta-materials using neural networks is replacing the traditional experiment-based testing methods.In this paper,a Gini impurity-based artificial neural network structural optimizer(GIASO)is proposed to optimize the neural network structure,and the effects of five different initialization algorithms on the model performance and struc-ture optimization are investigated.Two physically guided models with additional resonant frequencies and sound transmission loss formula are achieved to further improve the prediction accuracy of the model.The results show that GIASO utilizing the gray wolf optimizer as the initialization method can significantly improve the prediction performance of the model.Simultaneously,the physical guidance model with additional resonant frequencies has the best performance and can better predict the edge data points.Eventually,the effect of each input parameter on the sound transmission loss is explained by combining sensitivity analysis and theoretical formulation.
文摘The application of green building technology can not only protect the environment in construction, achieve the purpose of ecological construction, improve the application level of green technology, but also effectively promote economic development. Green building technology first requires the use of environmental protection building materials, improve the utilization of resources, the application of green energy-saving construction technology, to achieve the effect of energy saving and emission reduction, green building technology is expected to achieve considerable ecological benefits. Next, the article discusses the optimization and combination of green building technology in architectural design.
基金supported by National Natural Science Foundation of China (No. 60675043)Natural Science Foundation of Zhejiang Province of China (No. Y1090426, No. Y1090956)Technical Project of Zhejiang Province of China (No. 2009C33045)
文摘This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.
基金supported in part by the National Key R&D Program of China(2020YFB1806103)the National Natural Science Foundation of China under Grant 62225103 and U22B2003+1 种基金Beijing Natural Science Foundation(L212004)China University Industry-University-Research Collaborative Innovation Fund(2021FNA05001).
文摘With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.
基金Project(2012B091100444)supported by the Production,Education and Research Cooperative Program of Guangdong Province and Ministry of Education,ChinaProject(2013ZM0091)supported by Fundamental Research Funds for the Central Universities of China
文摘To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.
基金supported by the National Natural Science Foundation of China(51505385)Shanghai Aerospace Science and Technology Innovation Foundation(SAST2015010)the Defense Basic Research Program(JCKY2016204B102)
文摘A new efficient coupling relationship description method has been developed to provide an automated and visualized way to multidisciplinary design optimization (MDO) modeling and solving. The disciplinary relation matrix (DRM) is proposed to describe the coupling relationship according to disciplinary input/output variables, and the MDO definition has been reformulated to adopt the new interfaces. Based on these, a universal MDO solving procedure is proposed to establish an automated and efficient way for MDO modeling and solving. Through a simple and convenient initial configuration, MDO problems can be solved using any of available MDO architectures with no further effort. Several examples are used to verify the proposed MDO modeling and solving process. Result shows that the DRM method has the ability to simplify and automate the MDO procedure, and the related MDO framework can evaluate the MDO problem automatically and efficiently.
基金supported by the National High Technology Research and Development Program of China No.2014AA01A701Nature and Science Foundation of China under Grants No.61471068,61421061+2 种基金Beijing Nova Programme No.Z131101000413030International Collaboration Project No.2015DFT10160National Major Project No.2016ZX03001009-003
文摘The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.
基金This work was supported by a Ulucu PhD studentshipY.Jin is funded by an Alexander von Humboldt Professorship for Artificial Intelligence endowed by the German Federal Ministry of Education and Research.
文摘Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks(DNNs).However,NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS,and training DNNs is computationally intensive.To solve this major limitation of NAS,improving the computational efficiency is essential in the design of NAS.However,a systematic overview of computationally efficient NAS(CE-NAS)methods still lacks.To fill this gap,we provide a comprehensive survey of the state-of-the-art on CE-NAS by categorizing the existing work into proxy-based and surrogate-assisted NAS methods,together with a thorough discussion of their design principles and a quantitative comparison of their performances and computational complexities.The remaining challenges and open research questions are also discussed,and promising research topics in this emerging field are suggested.