Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ...Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.展开更多
Reconfiguration planning is recognized as an important factor for reducing the cost of manufacturing reconfigurable products, and the associated main task is to generate a set of optimal or near-optimal reconfiguratio...Reconfiguration planning is recognized as an important factor for reducing the cost of manufacturing reconfigurable products, and the associated main task is to generate a set of optimal or near-optimal reconfiguration sequences using some effect algorithms. A method is developed to generate a Petri net as the reconfiguration tree to represent two-state-transit of product, which solved the representation problem of reconfiguring interfaces replacement. Relating with this method, two heuristic algorithms are proposed to generate task sequences which considering economics to search reconfiguration paths effectively. At last, an objective evaluation is applied to compare these two heuristic algorithms to other ones. The developed reconfiguration task planning heuristic algorithms can generate better strategies and plans for reconfiguration. The research finds are exemplified with struts reconfiguration of reconfigurable parallel kinematics machine (RPKM).展开更多
The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling...The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling goal and constraint character,a heuristics rule-based multi-stage link scheduling algorithm was put forward.The algorithm distinguishes the on-off-frontier satellites from the others and schedules them by turns.The paper presented the main flow as well as the detailed design of the rule.Finally based on the current COMPASS global system,some typical resources and constraints are selected to generate an instance.Then the comparison analysis between the heuristics scheduling algorithm and three other traditional scheduling strategies are carried out.The result shows the validity and reasonability of the multi-stage strategy.展开更多
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat...Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mis...As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polyn...Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiti...The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.展开更多
Search speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A* (RE...Search speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A* (REA*), is presented that improves the performance of A* significantly. REA* explores maps in units of unblocked rectangles. All unnecessary points inside the rectangles are pruned and boundaries of the rectangles (instead of individual points within those boundaries) are used as search nodes. This makes the algorithm plot fewer points and have a much shorter open list than A*. REA* returns jump and grid-optimal path points, but since the line of sight between jump points is protected by the unblocked rectangles, the resulting path of REA" is usually better than grid-optimal. The algorithm is entirely online and requires no offline pre-processing. Experimental results for typical benchmark problem sets show that REA* can speed up a highly optimized A* by an order of magnitude and more while preserving completeness and optimality. This new algorithm is competitive with other highly successful variants of A*.展开更多
In the steelmaking and continuous casting (SMCC) production process, operation time delay may lead to casting break or processing conflict so that the initial scheduling plan becomes unrealizable. Existing research ...In the steelmaking and continuous casting (SMCC) production process, operation time delay may lead to casting break or processing conflict so that the initial scheduling plan becomes unrealizable. Existing research meth- ods are difficult to guarantee the accuracy of the model and successful application to actual applications. The resched- uling problem in response to operation time delay is firstly analyzed. This is then followed by the establishment of a novel multi-obiective nonlinear programming model (MONPM). In specifications, a three-stage rescheduling method is proposed including the batches splitting (BS), forward scheduling method (FSM) and backward scheduling meth- od (BSM). As a result, the real-time application shows that the proposed rescheduling method efficiently ensures the continuous casting and dramatically shortens the redundant waiting time for molten steel in very short rescheduling time.展开更多
To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating sched...To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.展开更多
Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into g...Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.展开更多
Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the re...Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.展开更多
In a general case, container ship serves many different ports on each voyage. A stowage planning for container ship made at one port must take account of the influence on subsequent ports. So the complexity of stowage...In a general case, container ship serves many different ports on each voyage. A stowage planning for container ship made at one port must take account of the influence on subsequent ports. So the complexity of stowage planning problem increases due to its multi-ports nature. This problem is NP-hard problem. In order to reduce the computational complexity, the problem is decomposed into two sub-problems in this paper. First, container ship stowage problem (CSSP) is regarded as 'packing problem', ship-bays on the board of vessel are regarded as bins, the number of slots at each bay are taken as capacities of bins, and containers with different characteristics (homogeneous containers group) are treated as items packed. At this stage, there are two objective functions, one is to minimize the number of bays packed by containers and the other is to minimize the number of overstows. Secondly, containers assigned to each bays at first stage are allocate to special slot, the objective functions are to minimize the metacentric height, heel and overstows.The taboo search heuristics algorithm are used to solve the subproblem. The main focus of this paper is on the first subproblem. A case certifies the feasibility of the model and algorithm.展开更多
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused b...Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.展开更多
We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the pack...We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions.展开更多
The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertain...The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.展开更多
文摘Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.
基金Supported by the High Technology Research and Development Programme of China (No. 2006AA04Z133) and the National Natural Science Foundation of China (No. 50605035, 50510488).
文摘Reconfiguration planning is recognized as an important factor for reducing the cost of manufacturing reconfigurable products, and the associated main task is to generate a set of optimal or near-optimal reconfiguration sequences using some effect algorithms. A method is developed to generate a Petri net as the reconfiguration tree to represent two-state-transit of product, which solved the representation problem of reconfiguring interfaces replacement. Relating with this method, two heuristic algorithms are proposed to generate task sequences which considering economics to search reconfiguration paths effectively. At last, an objective evaluation is applied to compare these two heuristic algorithms to other ones. The developed reconfiguration task planning heuristic algorithms can generate better strategies and plans for reconfiguration. The research finds are exemplified with struts reconfiguration of reconfigurable parallel kinematics machine (RPKM).
基金National Natural Science Foundations of China(Nos.71201171,71501179)
文摘The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling goal and constraint character,a heuristics rule-based multi-stage link scheduling algorithm was put forward.The algorithm distinguishes the on-off-frontier satellites from the others and schedules them by turns.The paper presented the main flow as well as the detailed design of the rule.Finally based on the current COMPASS global system,some typical resources and constraints are selected to generate an instance.Then the comparison analysis between the heuristics scheduling algorithm and three other traditional scheduling strategies are carried out.The result shows the validity and reasonability of the multi-stage strategy.
文摘Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
文摘As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
基金supported in part by the National Natural Science Foundation of China(61473053)the Science and Technology Innovation Foundation of Dalian,China(2020JJ26GX033)。
文摘The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.
基金supported by the National Natural Science Foundation of China (No.61573283)
文摘Search speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A* (REA*), is presented that improves the performance of A* significantly. REA* explores maps in units of unblocked rectangles. All unnecessary points inside the rectangles are pruned and boundaries of the rectangles (instead of individual points within those boundaries) are used as search nodes. This makes the algorithm plot fewer points and have a much shorter open list than A*. REA* returns jump and grid-optimal path points, but since the line of sight between jump points is protected by the unblocked rectangles, the resulting path of REA" is usually better than grid-optimal. The algorithm is entirely online and requires no offline pre-processing. Experimental results for typical benchmark problem sets show that REA* can speed up a highly optimized A* by an order of magnitude and more while preserving completeness and optimality. This new algorithm is competitive with other highly successful variants of A*.
基金Sponsored by National Basic Research Program of China(2009CB320601)National Natural Science Foundation of China(61104174,61174187)
文摘In the steelmaking and continuous casting (SMCC) production process, operation time delay may lead to casting break or processing conflict so that the initial scheduling plan becomes unrealizable. Existing research meth- ods are difficult to guarantee the accuracy of the model and successful application to actual applications. The resched- uling problem in response to operation time delay is firstly analyzed. This is then followed by the establishment of a novel multi-obiective nonlinear programming model (MONPM). In specifications, a three-stage rescheduling method is proposed including the batches splitting (BS), forward scheduling method (FSM) and backward scheduling meth- od (BSM). As a result, the real-time application shows that the proposed rescheduling method efficiently ensures the continuous casting and dramatically shortens the redundant waiting time for molten steel in very short rescheduling time.
基金Projects(7107111561273035)supported by the National Natural Science Foundation of China
文摘To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.
文摘Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.
文摘Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.
基金Supported by a Special Fund Support Item of Doctor Subject of Colleges and Universities (No. 2000014125)
文摘In a general case, container ship serves many different ports on each voyage. A stowage planning for container ship made at one port must take account of the influence on subsequent ports. So the complexity of stowage planning problem increases due to its multi-ports nature. This problem is NP-hard problem. In order to reduce the computational complexity, the problem is decomposed into two sub-problems in this paper. First, container ship stowage problem (CSSP) is regarded as 'packing problem', ship-bays on the board of vessel are regarded as bins, the number of slots at each bay are taken as capacities of bins, and containers with different characteristics (homogeneous containers group) are treated as items packed. At this stage, there are two objective functions, one is to minimize the number of bays packed by containers and the other is to minimize the number of overstows. Secondly, containers assigned to each bays at first stage are allocate to special slot, the objective functions are to minimize the metacentric height, heel and overstows.The taboo search heuristics algorithm are used to solve the subproblem. The main focus of this paper is on the first subproblem. A case certifies the feasibility of the model and algorithm.
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.
基金Projects(72071202,71671184)supported by the National Natural Science Foundation of ChinaProject(22YJCZH144)supported by Humanities and Social Sciences Youth Foundation,Ministry of Education of China+3 种基金Project(2022M712680)supported by Postdoctoral Research Foundation of ChinaProject(22KJB110027)supported by Natural Science Foundation of Colleges and Universities in Jiangsu Province,ChinaProject(D2019046)supported by Initiation Foundation of Xuzhou Medical University,ChinaProject(2021SJA1079)supported by General Project of Philosophy and Social Science Research in Jiangsu Universities,China。
文摘Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.
文摘We present a new algorithm for nesting problems.Many equally spaced points are set on a sheet,and a piece is moved to one of the points and rotated by an angle.Both the point and the rotation angle constitute the packing attitude of the piece.We propose a new algorithm named HAPE(Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the optimal packing attitude at which the piece has the lowest center of gravity.In addition,a new technique for polygon overlap testing is proposed which avoids the time-consuming calculation of no-fit-polygon(NFP).The detailed implementation of HAPE is presented and two computational experiments are described.The first experiment is based on a real industrial problem and the second on 11 published benchmark problems.Using a hill-climbing(HC) search method,the proposed algorithm performs well in comparison with other published solutions.
基金Project(BX20180268)supported by National Postdoctoral Program for Innovative Talent,ChinaProject(300102228101)supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(51578150)supported by the National Natural Science Foundation of ChinaProject(18YJCZH130)supported by the Humanities and Social Science Project of Chinese Ministry of Education
文摘The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.