期刊文献+
共找到225篇文章
< 1 2 12 >
每页显示 20 50 100
Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning
1
作者 Mohammad Tabrez Quasim Khair Ul Nisa +3 位作者 Mohammad Shahid Husain Abakar Ibraheem Abdalla Aadam Mohammed Waseequ Sheraz Mohammad Zunnun Khan 《Computers, Materials & Continua》 2025年第7期1169-1187,共19页
Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing... Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework. 展开更多
关键词 Smart edge computing heterogeneous networks blockchain 5G network internet of things artificial intelligence
在线阅读 下载PDF
Non-Terrestrial Network: Architecture, Technologies and Applications
2
作者 Gao Yuan Wu Gang +3 位作者 Hao Zhangcheng Zhao Nan Dusit Niyato Arumugam Nallanathan 《China Communications》 2025年第10期I0002-I0005,共4页
With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not onl... With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not only a technological leap forward but also a major trend shaping the future of global connectivity.As a layered heterogeneous network,NTN integrates multiple aerial platforms—including satellites,high-altitude platform systems(HAPS),and unmanned aerial systems(UAS)—to provide flexible and composable solutions aimed at achieving seamless worldwide communication coverage. 展开更多
关键词 unmanned aerial systems uas non terrestrial networks SATELLITES layered heterogeneous networkntn aerial platforms layered heterogeneous network high altitude platform systems unmanned aerial systems
在线阅读 下载PDF
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
3
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5G integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
4
作者 Cheng-Jun Xie Xiang-Qing Lu 《Chinese Physics B》 2025年第4期354-363,共10页
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s... This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results. 展开更多
关键词 finite time synchronization time-varying intermittent control duplex heterogeneous networks complex networks
原文传递
Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
5
作者 Xiongding Liu Xiaodan Zhao +1 位作者 Xiaojing Zhong Wu Wei 《Chinese Physics B》 2025年第6期262-274,共13页
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d... This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19. 展开更多
关键词 epidemic spreading SEIQR model stability and sensitivity analysis heterogeneous complex networks optimal control
原文传递
VHO Algorithm for Heterogeneous Networks of UAV-Hangar Cluster Based on GA Optimization and Edge Computing
6
作者 Siliang Chen Dongri Shan Yansheng Niu 《Computers, Materials & Continua》 2025年第12期5263-5286,共24页
With the increasing deployment of Unmanned Aerial Vehicle-Hangar(UAV-H)clusters in dynamic environments such as disaster response and precision agriculture,existing networking schemes often struggle with adaptability ... With the increasing deployment of Unmanned Aerial Vehicle-Hangar(UAV-H)clusters in dynamic environments such as disaster response and precision agriculture,existing networking schemes often struggle with adaptability to complex scenarios,while traditional Vertical Handoff(VHO)algorithms fail to fully address the unique challenges of UAV-H systems,including high-speed mobility and limited computational resources.To bridge this gap,this paper proposes a heterogeneous network architecture integrating 5th Generation Mobile Communication Technology(5G)cellular networks and self-organizing mesh networks for UAV-H clusters,accompanied by a novel VHO algorithm.The proposed algorithm leverages Multi-Attribute Decision-Making(MADM)theory combined with Genetic Algorithm(GA)optimization,incorporating edge computing to enable real-time decision-making and offload computational tasks efficiently.By constructing a utility function through attribute and weight matrices,the algorithm ensures UAV-H clusters dynamically select the optimal network access with the highest utility value.Simulation results demonstrate that the proposed method reduces network handoff times by 26.13%compared to the Decision Tree VHO(DT-VHO),effectively mitigating the ping-pong effect,and enhancing total system throughput by 19.99%under the same conditions.In terms of handoff delay,it outperforms the Artificial Neural Network VHO(ANN-VHO),significantly improving the Quality of Service(QoS).Finally,real-world hardware platform experiments validate the algorithm’s feasibility and superior performance in practical UAV-H cluster operations.This work provides a robust solution for seamless network connectivity in high-mobility UAV clusters,offering critical support for emerging applications requiring reliable and efficient wireless communication. 展开更多
关键词 Vertical handoff heterogeneous networks genetic algorithm multiple-attribute decision-making unmanned aerial vehicle edge computing
在线阅读 下载PDF
Conditional Generative Adversarial Network-Based Travel Route Recommendation
7
作者 Sunbin Shin Luong Vuong Nguyen +3 位作者 Grzegorz J.Nalepa Paulo Novais Xuan Hau Pham Jason J.Jung 《Computers, Materials & Continua》 2026年第1期1178-1217,共40页
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of... Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence. 展开更多
关键词 Travel route recommendation conditional generative adversarial network heterogeneous information network anchor-and-expand algorithm
在线阅读 下载PDF
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
8
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
Equivalent Bandwidth Concept and Its Usage in the Network Selection
9
作者 Ma Anhua Pan Su Zhou Weiwei 《China Communications》 2025年第2期213-225,共13页
Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in dif... Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency. 展开更多
关键词 call blocking probability equivalent bandwidth heterogeneous network network applicability
在线阅读 下载PDF
Disintegration of heterogeneous combat network based on double deep Q-learning
10
作者 CHEN Wenhao CHEN Gang +1 位作者 LI Jichao JIANG Jiang 《Journal of Systems Engineering and Electronics》 2025年第5期1235-1246,共12页
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),... The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods. 展开更多
关键词 heterogeneous combat network(HCN) combat system of systems(CSoS) network disintegration reinforcement learning
在线阅读 下载PDF
Mobility-Aware Edge Caching with Transformer-DQN in D2D-Enabled Heterogeneous Networks
11
作者 Yiming Guo Hongyu Ma 《Computers, Materials & Continua》 2025年第11期3485-3505,共21页
In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic natu... In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions. 展开更多
关键词 Mobile edge caching D2D heterogeneous networks deep reinforcement learning transformer model transmission delay optimization
在线阅读 下载PDF
C-privacy:A social relationship-driven image customization sharing method in cyber-physical networks
12
作者 Dapeng Wu Jian Liu +3 位作者 Yangliang Wan Zhigang Yang Ruyan Wang Xinqi Lin 《Digital Communications and Networks》 2025年第2期563-573,共11页
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV... Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses. 展开更多
关键词 Cyber-physical networks Customized privacy Face-swapping Heterogeneous information network Deep fakes
在线阅读 下载PDF
Dynamic Collaborative Data Download in Heterogeneous Satellite Networks
13
作者 Wu Qi Li Xintong Zhu Lidong 《China Communications》 2025年第2期26-46,共21页
Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic... Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic nature of LEO satellites leads to limited and rapidly varying contact time between them and Earth stations(ESs),making it difficult to timely download massive communication and remote sensing data within the limited time window.To address this challenge in heterogeneous satellite networks with coexisting geostationary-earth-orbit(GEO)and LEO satellites,this paper proposes a dynamic collaborative inter-satellite data download strategy to optimize the long-term weighted energy consumption and data downloads within the constraints of on-board power,backlog stability and time-varying contact.Specifically,the Lyapunov optimization theory is applied to transform the long-term stochastic optimization problem,subject to time-varying contact time and on-board power constraints,into multiple deterministic single time slot problems,based on which online distributed algorithms are developed to enable each satellite to independently obtain the transmit power allocation and data processing decisions in closed-form.Finally,the simulation results demonstrate the superiority of the proposed scheme over benchmarks,e.g.,achieving asymptotic optimality of the weighted energy consumption and data downloads,while maintaining stability of the on-board backlog. 展开更多
关键词 backlog stability data download heterogeneous satellite networks Lyapunov optimization power allocation
在线阅读 下载PDF
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
14
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks 被引量:1
15
作者 Kexin Wang Yingdong Gou +4 位作者 Dingrui Xue Jiancheng Liu Wanlong Qi Gang Hou Bo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2941-2962,共22页
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net... The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms. 展开更多
关键词 Resilience enhancement heterogeneous network graph convolutional network
在线阅读 下载PDF
Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone:A Stochastic Geometry Approach 被引量:1
16
作者 Yulei Wang Li Feng +3 位作者 Shumin Yao Hong Liang Haoxu Shi Yuqiang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期639-661,共23页
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices... Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate. 展开更多
关键词 Device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets) exclusion zone stochastic geometry(SG) Matérn hard-core process(MHCP)
在线阅读 下载PDF
Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
17
作者 晏询 李志军 李春来 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期537-544,共8页
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero... Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength. 展开更多
关键词 heterogeneous neuron network discrete memristor coexisting attractors SYNCHRONIZATION noise
原文传递
Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment
18
作者 Arif Ullah Ziaul Haq Abbas +2 位作者 Ghulam Abbas Fazal Muhammad Jae-Mo Kang 《Digital Communications and Networks》 SCIE CSCD 2024年第4期904-917,共14页
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d... In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots. 展开更多
关键词 Downlink cell association Heterogeneous cellular networks Integrated sub-6GHz and mmWave networks Millimeter wave communications Poisson cluster process
在线阅读 下载PDF
Channel assignment and power allocation for throughput improvement with PPO in B5G heterogeneous edge networks
19
作者 Xiaoming He Yingchi Mao +3 位作者 Yinqiu Liu Ping Ping Yan Hong Han Hu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期109-116,共8页
In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u... In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods. 展开更多
关键词 B5G Heterogeneous edge networks PPO Channel assignment Power allocation THROUGHPUT
在线阅读 下载PDF
Analytical modeling of cache-enabled heterogeneous networks using Poisson cluster processes
20
作者 Junhui Zhao Lihua Yang +1 位作者 Xiaoting Ma Ziyang Zhang 《Digital Communications and Networks》 CSCD 2024年第5期1439-1447,共9页
The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hot... The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis. 展开更多
关键词 Heterogeneous networks Millimeter wave Poisson cluster processes CACHING Stochastic geometry
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部