期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Mass Transfer during Hematitization and Implications for Uranium Mineralization in the Zoujiashan Deposit,Xiangshan Volcanic Basin 被引量:1
1
作者 Teng Deng Guoxiang Chi +11 位作者 Xiongjie Zhang Zenghua Li Deru Xu Shengmiao Li Pengfei Du Pei Shang Shaohao Zou Wanpeng Zhou Ke Xu Hai Yan MaWen Zhengpeng Ding 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期422-434,共13页
The Zoujiashan uranium deposit in the Xiangshan ore field is the largest volcanic-related uranium deposit in China.Hematite-and fluorite-type ores are the predominant mineralization styles.Hematitization in the Xiangs... The Zoujiashan uranium deposit in the Xiangshan ore field is the largest volcanic-related uranium deposit in China.Hematite-and fluorite-type ores are the predominant mineralization styles.Hematitization in the Xiangshan ore field is closely associated with uranium mineralization,mainly occurring as hematitized rocks enclosing fluorite-type vein ores developed in pre-ore illitized porphyritic lava.Detailed petrographic and mass balance calculation studies were conducted to evaluate the mechanisms for uranium precipitation and mass transfer during hematitization.Petrographic observations suggest that in the hematitized rocks,orthoclase is more altered than plagioclase,and quartz dissolution is common,whereas in the illitized rocks,pyrite commonly occurs within the altered biotite grains,and chlorite grains are locally found.Mass balance calculations indicate that Na2O and U were gained,K2O,Ca O and Si O2were lost,whereas Fe2O3-t remained more or less constant during hematitization.These observations suggest that the hydrothermal fluids were Na-and U-rich and Ca-K-poor,and the Fe2+used for hematitization was locally derived,most likely from biotite,pyrite and chlorite in the host rocks.The Fe2+is inferred to have played the role of reductant to precipitate uranium,and calculation indicates that oxidation of Fe2+provided by host rocks is sufficient to form ores of economic significance.Consequently,the hematite-type ore is interpreted to be generated by the reaction between oxidized ore fluids and reduced components in host rocks.The development of calcite and pyrite in the fluorite ores suggests that perhaps mixing between the U-rich fluid and another fluid carrying reduced sulfur and carbon may have also contributed to uranium mineralization,in addition to temperature and pressure drop associated with the veining. 展开更多
关键词 Xiangshan uranium ore field mass transfer uranium precipitation hematitization redox reaction ore deposit geology
原文传递
Evaluation of MgO on hematite swelling dynamics during CO-driven stepwise reduction
2
作者 Fang Zhang Jun Peng +2 位作者 Shuang Liu Yong-bin Wang Fan Yang 《Journal of Iron and Steel Research International》 2025年第3期564-577,共14页
The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansio... The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansion of strip samples was measured using a linear dilatometer during the staged reduction process at a temperature of 900℃.The existence states of MgO in hematite,magnetite,and wüstite were investigated through thermodynamic calculations.The magnetite strip samples were subjected to oxidizing roasting at 1250℃ for 30 min to produce hematite strip samples.The strip samples with 0.49,1.49,2.49,and 3.49 wt.%MgO were analyzed for length change.It was observed that the sample with 2.49 wt.%MgO exhibited the least significant length change.The lengths of the samples with the initial length being 20 mm before reduction changed during the reduction stages of Fe_(2)O_(3)→Fe_(3)O_(4),Fe_(3)O_(4)→FeO,and FeO→Fe were 615,−25,and−378μm,respectively.The volume expansion of hematite to magnetite was primarily attributed to the crystal transformation.During the reduction stage from wüstite to metallic iron,a substantial contraction occurred,while the slag phase was able to retain its original basic shape.The enclosed areas,as indicated by the expansion change curves of the samples with 0.49,1.49,2.49,and 3.49 wt.%MgO,were measured at 3.76×10^(6),3.23×10^(6),3.05×10^(6),and 3.17×10^(6)μm s,respectively. 展开更多
关键词 MGO HEMATITE Reduction swelling Step-by-step reduction
原文传递
In-situ reduction mechanism of hematite by bastnaesite during suspension magnetization roasting
3
作者 Wen-bo LI Shao-kai CHENG +1 位作者 Rui QU Ji-jia CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第3期965-974,共10页
To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,... To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation. 展开更多
关键词 BASTNAESITE HEMATITE magnetization roasting in-situ reduction
在线阅读 下载PDF
Iron recovery and dephosphorization behaviors from high-phosphorus oolitic hematite by gas-based direct reduction and magnetic separation
4
作者 Fang Liu Yi-chi Zhang +6 位作者 Wang Zeng Jun Ni Yun-peng Si Heng Zhou Tian-xiang Zhang Sheng-li Wu Ming-yin Kou 《Journal of Iron and Steel Research International》 2025年第3期550-563,共14页
With the depletion of high-quality iron ore resources,high-phosphorus oolitic hematite(HPOH)has attracted great attention due to its large reserve and relatively high iron content.However,HPOH is very difficult to be ... With the depletion of high-quality iron ore resources,high-phosphorus oolitic hematite(HPOH)has attracted great attention due to its large reserve and relatively high iron content.However,HPOH is very difficult to be used in ironmaking process due to its special structure.A two-step method of gas-based direct reduction and magnetic separation was thus proposed to recover iron and reduce phosphorus.The results showed that the powdery reduced iron produced contained 92.31%iron and 0.1%phosphorus,and the iron recovery was 92.65%under optimum reduction condition,which is suitable for following steelmaking.The apatite will be reduced under long reduction time and a large reducing gas flow rate,resulting in more phosphorus found in the metallic iron.Increasing the hydrogen–carbon ratio will inhibit the formation and growth of iron particles and prevent the breakage of oolitic structure.Careful adjustment of reduction temperature is recommended as it affects the oolitic structure and reduction. 展开更多
关键词 High-phosphorus oolitic hematite Iron recovery DEPHOSPHORIZATION Gas-based direct reduction Magnetic separation
原文传递
Dual mediators promote charge transfer of hematite photoanode for durable photoelectrocatalytic water splitting
5
作者 Yuanyuan Jiang Yan Zhang +3 位作者 Mengmeng Liu Lulu Liu Hong Chen Sheng Ye 《Chinese Journal of Catalysis》 2025年第2期75-83,共9页
Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water spl... Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm^(-2) at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion. 展开更多
关键词 HEMATITE Molecular catalyst Charge transfer mediator Photoelectrocatalytic water splitting
在线阅读 下载PDF
Flash Calcination of Kaolinite Clay in a Pilot Reactor: Evaluation of Clay Color Change in Oxidizing, Inert and Reducing Atmospheres
6
作者 Gabriel Henrique Wienhage Vinícius Henrique de Freitas +4 位作者 Julio Zeppone Carlos Luis Filipe von Rainer Fabiani Luiz Felipe de Pinho Rodrigo de Souza Borges Vinicyus Rodolfo Wiggers 《Journal of Building Material Science》 2025年第1期73-82,共10页
Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcina... Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity. 展开更多
关键词 Flash Calcination Kaolinite Clay Reducing Atmosphere Reduction of Hematite
在线阅读 下载PDF
Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants 被引量:2
7
作者 Zhixiong Yang Yuan Li +3 位作者 Xiaotian Wang Jiaming Li Jiquan Wang Gaoke Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期204-214,共11页
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in e... Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes.Thus,we constructed a photochemical system composed of hematite with{001}facet of high activity facet and low-cost and non-toxic oxalic acid(OA)for the removal of various types of pollutants.The removal rate for the degradation of metronidazole,tetracycline hydrochloride,Rhodamine B,and hexavalent chromium by hematite nanoplate with the exposed{001}facet activating OA under visible light irradiation was 4.75,2.25,2.33,and 2.74 times than that by the exposed{110}facet,respectively.Density functional theory(DFT)calculation proved that the OA molecule was more easily adsorbed on the{001}facet of hematite than that on the{110}facet,which would favor the formation of the more Fe(Ⅲ)-OA complex and reactive species.In addition,the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals,and the possible degradation pathway for metronidazole included carbon chain fracture,hydroxyethyl-cleavage,denitrogenation,and hydroxylation.Thus,this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation. 展开更多
关键词 HEMATITE Facet exposure Oxalic acid activation Fenton-like system Pollutant removal
原文传递
Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process 被引量:2
8
作者 Yufeng Guo Jinlai Zhang +5 位作者 Shuai Wang Jianjun Fan Haokun Li Feng Chen Kuo Liu Lingzhi Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期485-497,共13页
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or... The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed. 展开更多
关键词 fluxed iron ore pellet LIMESTONE HEMATITE QUARTZ diffusion reaction
在线阅读 下载PDF
Selective flocculation-flotation of ultrafine hematite from clay minerals under asynchronous flocculation regulation 被引量:1
9
作者 Fusheng Niu Yuying Chen +2 位作者 Jinxia Zhang Fei Liu Ziye Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1563-1574,共12页
The clay mineral flocculation encapsulation poses a major technical challenge in the field of fine mineral separation.Enhancing the ability to separate clay minerals from target mineral surfaces is key to addressing t... The clay mineral flocculation encapsulation poses a major technical challenge in the field of fine mineral separation.Enhancing the ability to separate clay minerals from target mineral surfaces is key to addressing this issue.In the flotation process of ultrafine hematite,sodium polyacrylate(PAAS)was used as a selective flocculant for hematite,polyaluminum chloride(PAC)as a flocculant for kaolinite and chlorite,and sodium oleate(NaOL)as the collector to achieve asynchronous flocculation flotation.This study examines the flotation separation performance and validates it through experiments on actual mineral samples.The results indicate that with PAAS and PAC dosages of 1.25 and 50 mg·L^(-1),respectively,the iron grade and recovery of the actual mineral samples increased by 9.39%and 7.97%.Through Zeta potential,XPS analysis,infrared spectroscopy,and total organic carbon(TOC)testing,the study reveals the microscopic interaction mechanisms of different flocculants with minerals,providing insights for the clean and efficient utilization of ultrafine mineral resources. 展开更多
关键词 CHLORITE HEMATITE KAOLINITE Ultrafine particles Asynchronous flocculation
在线阅读 下载PDF
Effect of alumina occurrence form on metallurgical properties of hematite and magnetite pellets 被引量:1
10
作者 Jian Pan Chen-mei Tang +3 位作者 Cong-cong Yang De-qing Zhu Zheng-qi Guo Wei-qun Huang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期797-809,共13页
The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al_(2)O level of 2 wt.%,including reduction index(RI),low-temperature reduction... The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al_(2)O level of 2 wt.%,including reduction index(RI),low-temperature reduction disintegration index(RDI),reduction swelling index(RSI),and high-temperature softening-dripping performance.The mineralogy of fired pellets was also studied to reveal the influence of alumina occurrence form on the phase composition and microstructure.From the results,the alumina occurrence form presents tremendous impacts on the metallurgical perfor-mance of both magnetite and hematite pellets.Addition of all alumina occurrence forms contributes to inferior reducibility of pellets,especially in the case of gibbsite for magnetite pellets with a RI of 58.4%and kaolinite for hematite pellets with a RI of 56.8%.However,addition of all alumina occurrence forms improves the RDI of magnetite pellets,while there is no significant difference among various alumina occurrence forms.In contrast,alumina occurrence forms have little influence on the RDI of hematite pellets.The presence of free alumina,gibbsite,and kaolinite tends to improve the RSI of hematite and magnetite pellets,whereas hercynite gives the opposite trend with a RSI of 25.6%.For softening-dripping performance of magnetite pellets,all alumina occurrence forms contribute to narrower softening-melting interval.Meanwhile,alumina,gibbsite,and kaolinite give narrower softening-dripping interval,at 229,217,and 88℃,respectively,whereas addition of hercynite results in the largest melting range at 276℃ due to its high melting point.Regarding hematite pellets,free alumina,gibbsite,and hercynite tend to enlarge melting range,whereas kaolinite contributes to lower dripping temperature of 1148℃ and narrow softening-dripping interval of 88℃ due to the formation of a greater amount of slag phase at high temperatures. 展开更多
关键词 Oxidized pellet MAGNETITE HEMATITE Alumina occurrence form Metallurgical performance Blast furnace
原文传递
Activation of hematite photoanode synthesized at low temperature by W doping
11
作者 Changtong Ma Dongfeng Li +2 位作者 Lin Liu Xiuli Wang Hongxian Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期149-155,I0004,共8页
1.Introduction Solar water splitting offers a promising approach for green hydrogen production[1].There are many ways to achieve solar water splitting,such as photocatalytic(PC)water splitting,photoelectrochemical(PEC... 1.Introduction Solar water splitting offers a promising approach for green hydrogen production[1].There are many ways to achieve solar water splitting,such as photocatalytic(PC)water splitting,photoelectrochemical(PEC)water splitting,and photovoltaicelectrocatalytic(PV-EC)water splitting[2]. 展开更多
关键词 HEMATITE Solar water splitting Charge separation Charge transfer
在线阅读 下载PDF
First-principles study on the heterogeneous formation of environmentally persistent free radicals(EPFRs)overα-Fe2O3(0001)surface:Effect of oxygen vacancy
12
作者 Wenxiao Pan Shuming He +4 位作者 Qiao Xue Xian Liu Jianjie Fu Kang Xiao Aiqian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期279-289,共11页
Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy(WtE)incineration processes.This study aims to investigate the influenc... Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy(WtE)incineration processes.This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals(EPFRs)from phenolic compounds based on the first-principles calculations.Two oxygen-deficient conditions were considered:oxygen vacancies at the top surface and on the subsurface.Our simulations indicate that the adsorption strength of phenol on theα-Fe_(2)O_(3)(0001)surface is enhanced by the presence of oxygen vacancies.However,the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule,particularly for the surface with a defective point at the top layer.Thermo-kinetic parameters were established over a temperature range of300-1000 K,and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface.The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeⅢto FeⅡ,which lower the oxidizing ability of surface reaction sites.The findings of this study provide us a promising approach to regulate the formation of EPFRs. 展开更多
关键词 EPFR formation Phenol dissociation Oxygen-vacancy impact Hematite surface First-principles calculation
原文传递
Ferrihydrite transformation impacted by coprecipitation of lignin:Inhibition or facilitation?
13
作者 Lin Liu Zhihui Yang +4 位作者 Weichun Yang Wen Jiang Qi Liao Mengying Si Feiping Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Lignin is a common soil organic matter that is present in soils,but its effect on the transformation of ferrihydrite(Fh)remains unclear.Organic matter is generally assumed to inhibit Fh transformation.However,lignin c... Lignin is a common soil organic matter that is present in soils,but its effect on the transformation of ferrihydrite(Fh)remains unclear.Organic matter is generally assumed to inhibit Fh transformation.However,lignin can reduce Fh to Fe(Ⅱ),in which Fe(Ⅱ)-catalyzed Fh transformation occurs.Herein,the effects of lignin on Fh transformation were investigated at 75℃ as a function of the lignin/Fh mass ratio(0-0.2),pH(4-8)and aging time(0-96 hr).The results of Fh-lignin samples(mass ratios=0.1)aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh,and the Fe(Ⅱ)-accelerated transformation of Fh was strongly dependent on pH.Under pH 6,at low lignin/Fh mass ratios(0.05-0.1),the time of secondary mineral formation decreased with increasing lignin content.For high lignosulfonate-content material(lignin:Fh=0.2),Fh did not transform into secondary minerals,indicating that lignin content plays a major role in Fh transformation.In addition,lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation.The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment. 展开更多
关键词 Ferrihydrite transformation LIGNIN HEMATITE GOETHITE Fe(Ⅱ)-catalyzed Reactive Fe(Ⅲ)species
原文传递
The role of titanium at the interface of hematite photoanode in multisite mechanism:Reactive site or cocatalyst site?
14
作者 Minfei Xie Xing Ji +6 位作者 Huaying Meng Nanbing Jiang Zhenyu Luo Qianqian Huang Geng Sun Yunhuai Zhang Peng Xiao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期77-86,共10页
Hematite(α-Fe_(2)O_(3))constitutes one of the most promising photoanode materials for oxygen evolution reaction(OER).Recent research on Fe_(2)O_(3) have found a fast OER rate dependence on surface hole density,sugges... Hematite(α-Fe_(2)O_(3))constitutes one of the most promising photoanode materials for oxygen evolution reaction(OER).Recent research on Fe_(2)O_(3) have found a fast OER rate dependence on surface hole density,suggesting a multisite reaction pathway.However,the effect of heteroatom in Fe_(2)O_(3) on the multisite mechanism is still poorly understood.Herein we synthesized Fe_(2)O_(3) on Ti substrates(Fe_(2)O_(3)/Ti)to study the oxygen intermediates of OER by light-dark electrochemical scans.We identified the Fe-OH species disappeared and Ti-OH intermediates appeared on Fe_(2)O_(3)/Ti when pH=11‒14,which significantly improved the OER performance of Fe_(2)O_(3)/Ti.Combined with the density functional theory calculations,we propose that Ti atom acts as cocatalyst site and captures proton from neighboring Fe-OH species under highly alkaline condition,thereby promoting the coupling of Fe=O and reducing the energy barrier of the non-electrochemical step.Our work provides a new insight into the role of heteroatom in OER multisite mechanism based on clarifying the reaction intermediates. 展开更多
关键词 HEMATITE Oxygen evolution reaction Multisite mechanism INTERMEDIATE Proton capture
在线阅读 下载PDF
Unravelling the role of the combined effect of metallic charge transfer channel and SiO_(x) overlayer in the Zr/Si-Fe_(2)O_(3):Au:SiO_(x) nanorod arrays to boost photoelectrochemical water splitting
15
作者 Tae Sik Koh Periyasamy Anushkkaran +5 位作者 Love Kumar Dhandole Mahadeo A.Mahadik Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期370-379,I0009,共11页
Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose... Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose a Zr-doped Fe_(2)O_(3) photoanode decorated with facilely spin-coated Au nanoparticles(NPs) and microwave-assisted attached Si co-doping in conjunction with a SiO_(x) overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm^(2) at 1.23 V vs.RHE.The kinetic dynamics at the photoelectrode/-electrolyte interface was examined by employing systematic electrochemical investigations.The Au NPs played a dual role in increasing PEC water splitting.First,the Schottky interface that was formed between Au NPs and Zr-Fe_(2)O_(3) lectrode ensured the prevention of electron flow from the photoanode to the metal,increasing the number of available charges as well as suppressing surface charge recombination.Second,Au extracted photoholes from the bulk of the Zr-Fe_(2)O_(3) and transported them to the outer SiO_(x) overlayer,while the SiO_(x) overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte.Further,Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density.This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion. 展开更多
关键词 HEMATITE Microwave attachment Au nanoparticles SiO_(x) overlayer Water splitting
在线阅读 下载PDF
Formation, Identification and Colour Grading of Nanhong Agates from the Southwestern of China
16
作者 Chaowen Wang Huimin Huang +1 位作者 Haotian Wang Lingyue Yang 《宝石和宝石学杂志(中英文)》 CAS 2024年第S01期133-134,共2页
Nanhong agate is widely welcomed in China because of its bright red colour.The pursuit of the red agate is the inheritance of Chinese red agate culture,which can be dated back to more than 3000 years ago.Field survey ... Nanhong agate is widely welcomed in China because of its bright red colour.The pursuit of the red agate is the inheritance of Chinese red agate culture,which can be dated back to more than 3000 years ago.Field survey showed Nanhong agate geographically distributed in Yunnan and Sichuan provinces,the Southwestern of China(Fig.1).Geologically,Nanhong agate can be either produced as fillers in cracks and pores of the Late Permian E’meishan basalts,or as pebbles in the Early Triassic conglomerates and mudstones.Petrographic analyses reveal the formation of agates could be linked to the alteration of basalts by the silicon releasing in the process of transformation from pyroxene to chlorite.The formation of Nanhong agates could have experienced multi-stage alterations and crystallizations,which are supported by the occurrence of multi-stage chlorites and different homogenization temperatures of fluid inclusions bearing in the coarse grained quartz.The Nanhong agates are characterized by diffusely distributed hematite and/or goethite,causing the red to reddish orange in colour.These iron oxides occurre as aggregates showing dominantly spherical shapes and minor visible ellipsoid,hemisphere,radial and veil shape,with a size generally between 1.20μm and 43.21μm.Raman spectra,scanning electron microscopy,and high resolution transmission electron microscopy confirmed the present of hematite with single hematite particles smaller than 100 nm.Wide market survey of the selling Nanhong agates presented the quantified colour parameters,including hue,saturation,and brightness,obeying normal distribution in the Hue-Saturation-Brightness(HSB)colour space.After standardization,the hue(H)of Nanhong agate is mainly distributed in a range between[3.20°,17.52°]at a 95%confidence level.The saturation(S)and brightness(B)are mainly within[63.82%,92.69%]and[42.97%,75.37%],respectively.The Nanhong agates could be statistically classified as different grades by the Two Step Cluster analysis,which is objective compared to subjective visual evaluation.Factors causing the colour difference of Nanhong agates are attributed to the colour properties and distribution characteristics of hematite and goethite.The hue of Nanhong agate is dependent on the colour of the impurity minerals,hematite or goethite.Saturation is affected by the area ratio of impurity minerals.As the area ratio of impurity minerals is both affected by the distribution density and the average particle size,the saturation of Nanhong agate is the largest when the average particle size is near 10μm.No obvious correlation is observed between the brightness of Nanhong agates and their related properties and characteristics. 展开更多
关键词 E’meishan basalt HEMATITE HSB Nanhong agate Yunnan Province
在线阅读 下载PDF
Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate 被引量:23
17
作者 印万忠 杨小生 +2 位作者 周大鹏 李艳军 吕振福 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期652-664,共13页
Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that thes... Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential. 展开更多
关键词 sodium oleate ultrafine hematite shear hydrophobic flocculation extended DLVO theory
在线阅读 下载PDF
Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent 被引量:18
18
作者 徐承焱 孙体昌 +3 位作者 寇珏 李永利 莫晓兰 唐利刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2806-2812,共7页
High phosphorous oolitic hematite ore is one of typical intractable iron ores in China, and the conventional beneficiation methods are found to be impracticable to , remove phosphorus from the ore effectively. Better ... High phosphorous oolitic hematite ore is one of typical intractable iron ores in China, and the conventional beneficiation methods are found to be impracticable to , remove phosphorus from the ore effectively. Better beneficiation index were gotten by direct reduction roasting with dephosphorization agent followed by two stages of grinding and magnetic separation. P content decreases from 0.82% in the raw ore to 0.06% in the magnetic concentrate, and the total iron grade increases from 43.65% to 90.23%, the recovery of iron can reach 87%. Mechanisms of phosphorus removal in the beneficiation of high phosphorous oolitic hematite ore by direct reduction roasting with dephosphorization agent were studied using XRD, SEM and EPMA. The results showed that about 20% of the apatite in the raw ore transferred into phosphorus and volatilized with the gas in the process of reduction roasting, while the rest 80% apatite was not involved in the reaction of generation of phosphorus, and remained as apatite in the roasted products, which was removed to tailings by grinding and magnetic separation. A small amount of phosphorus existed in the magnetic concentrate as apatite. The oolitic texture of raw ore was partly changed during roasting, resulting in the formation of nepheline in the reaction between the dephosphorization agent, SiO2 and Al2O3 in the raw ore, which greatly improved the liberation degree of minerals in the roasted products, and it was beneficial to the subsequent grinding and magnetic separation. 展开更多
关键词 high phosphorous oolitic hematite direct reduction roasting phosphorus removal -dephosphorization agent GRINDING magnetic separation
在线阅读 下载PDF
Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration 被引量:22
19
作者 高志勇 孙伟 胡岳华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2930-2937,共8页
The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation resul... The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms. 展开更多
关键词 surface broken bonds CLEAVAGE surface energy pyrite SPHALERITE CASSITERITE RUTILE hematite
在线阅读 下载PDF
FT-IR, XPS, and DFT Study of Adsorption Mechanism of Sodium Acetohydroxamate onto Goethite or Hematite 被引量:1
20
作者 王梦 胡慧萍 +1 位作者 陈启元 姬广富 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期308-318,I0001,共12页
The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi- gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density f... The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi- gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density functional theory (DFT) calculations. The core-level shifts and charge transfers of the adsorbed surface iron sites calculated by DFT with periodic in- terfacial structures were confronted to the X-ray photoemission experiments. FT-IR results reveal that the interracial structure of sodium acetohydroxamate adsorbed on the goethite or hematite surface may be assigned to a five-membered ring complex. In agreement with the adsorption energies determined by the DFT calculations, a five-membered ring complex is formed via bonding of one surface iron atom of goethite (101) or (100) to both oxygen atoms of hydroxamate group, and these two oxygen atoms of the hydroxamate group correspond- ingly attach to two neighboring iron atoms of the goethite surface. But a five-membered ring complex between two oxygen atoms of the hydroxamate group and one surface iron atom of hematite (001) is formed without any extra attachments. The calculated core-level shifts of Fe2p for the interracial structures are correspondingly in good agreement with the experimental observed one, which confirmed the reliability of the calculated results. 展开更多
关键词 GOETHITE HEMATITE Sodium acetohydroxamate Adsorption Fourier transforminfrared spectroscopy X-ray photoemission spectroscopy
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部