期刊文献+
共找到2,168篇文章
< 1 2 109 >
每页显示 20 50 100
Graphene Size Dependent Hardness and Strengthening Mechanisms of Cu/Graphene Composites:A Molecular Dynamics Study
1
作者 Zhang Shuang Chang Guo +5 位作者 Li Liang Li Xiang Peng Haoran Chen Kaiyun Yang Nan Huo Wangtu 《稀有金属材料与工程》 北大核心 2025年第1期17-26,共10页
The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechan... The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness. 展开更多
关键词 Cu/graphene composites graphene size hardness strengthening mechanism molecular dynamics
原文传递
Characterization of elastic modulus and hardness of brittle solids by instrumented indentation
2
作者 Zhitong Xu Ming Liu Jianghong Gong 《Acta Mechanica Sinica》 2025年第1期141-162,共22页
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ... The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT). 展开更多
关键词 Brittle solids NANOINDENTATION Elastic modulus hardness Elastic recovery of Knoop imprint
原文传递
Synergetic Enhancement of Hardness and Toughness in New Superconductors Ti_(2)Co and Ti_(4)Co_(2)O
3
作者 Lifen Shi Keyuan Ma +12 位作者 Jingyu Hou Pan Ying Ningning Wang Xiaojun Xiang Pengtao Yang Xiaohui Yu Huiyang Gou Jianping Sun Yoshiya Uwatoko Fabian O.von Rohr Xiangfeng Zhou Bosen Wang Jinguang Cheng 《Chinese Physics Letters》 2025年第6期170-177,共8页
Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.B... Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances. 展开更多
关键词 limits metallic bonding structures superhard materials hardness SUPERCONDUCTORS alloy materials improving comprehensive mechanical properties cubic alloy semiconducting material
原文传递
Modification and experimental validation of the Forrestal-Warren perforation model for high hardness armor steel plates of intermediate thickness
4
作者 Radovan Djurovic Predrag Elek +1 位作者 Milos Markovic Dejan Jevtic 《Defence Technology(防务技术)》 2025年第4期267-284,共18页
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil... This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility. 展开更多
关键词 Terminal ballistics Penetration mechanics Predictive model High hardness armor Experimental investigation
在线阅读 下载PDF
A new route to bulk nanostructured multiphase alloys with ultrahigh hardness
5
作者 Yu Yin Hao Wang +8 位作者 Qiyang Tan Qiang Sun Yueqin Wu Shengduo Xu Yitian Zhao Meng Li Xiaozhou Liao Han Huang Mingxing Zhang 《Journal of Materials Science & Technology》 2025年第7期151-158,共8页
1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineeri... 1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging. 展开更多
关键词 bulk nanostructured materials metallic glasses ultrahigh hardness physical vapor deposition synthesis methodsincluding nanocomposites severe plastic deformation severe plastic deforma tion spd howeverindustry
原文传递
Effect of nitrile butadiene rubber hardness on the sealing characteristics of hydraulic O-ring rod seals 被引量:3
6
作者 Xiaoxuan LI Bingqing WANG +4 位作者 Xudong PENG Yuntang LI Xiaolu LI Yuan CHEN Jie JIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第1期63-78,共16页
The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to re... The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to reveal the mechanism of the influence of rubber hardness on the static and dynamic behavior of seals.The optimized selections of rubber hardness are then investigated under different conditions.Results show that the low hardness seal is prone to stress concentration due to the extrusion effect under high pressure conditions;it is also more prone to leaking.A high hardness seal can better prevent leakage by reducing film thickness but it will cause large frictional power loss and increase the probability of wear failure.The choice of low hardness is recommended to reduce friction with the premise that leakage requirements are met. 展开更多
关键词 Nitrile butadiene rubber(NBR)hardness Sealing characteristics Optimized selection O-ring seal
原文传递
Gravel hardness effect on compaction characteristics of gravelly soil
7
作者 SHI Yunfang LI Shengang +1 位作者 JIANG Chen LIU Jinning 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1432-1443,共12页
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he... The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction. 展开更多
关键词 Gravelly soil hardness Compaction characteristics Crushing characteristics Particle breakage rate Bailey method
原文传递
Data-driven mapping-relationship mining between hardness and mechanical properties of dual-phase titanium alloys via random forest and statistical analysis
8
作者 Hai-Chao Gong Qun-Bo Fan +7 位作者 Hong-Mei Zhang Xing-Wang Cheng Wen-Qiang Xie Kai Chen Lin Yang Jun-Jie Zhang Bing-Qiang Wei Shun Xu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期829-841,共13页
In order to accelerate the research on the property optimization of titanium alloy based on high-throughput methods,it is necessary to reveal the relationship between hardness and other mechanical properties which is ... In order to accelerate the research on the property optimization of titanium alloy based on high-throughput methods,it is necessary to reveal the relationship between hardness and other mechanical properties which is still unclear.In this work,taking Ti20C alloy as research object,almost all the microstructure of dual-phase titanium alloys were covered by traversing over 100 heat treatment schemes.Then,massive experiments including microstructure characterization and performance test were conducted,obtaining 51,590 pieces of microstructure data and 3591 pieces of mechanical property data.Subsequently,based on large-scale data-driven technology,the quantitative mapping relationship between hardness and other mechanical properties was deeply discussed.The results of random forest models showed that the correlation between hardness(H)and Charpy impact energy(A_(k))(or elongation,A)was hardly dependent on the microstructure types,while the relationship between H and tensile strength(R_(m))(or yield strength,R_(p0.2))was highly dependent on microstructure types.Specifically,combined with statistical analysis,it was found that the relationship between H and Ak(or A)were negatively linear.Interestingly,the relationship between H and strength was positively linear for equiaxed microstructure,and strength was linked to d^(−1/2)(d,equivalent circle diameter)ofα-grains in the form of classical Hall–Petch formula;but for other microstructures,the relationships were quadratic.Furthermore,the above rules were nearly the same in the rolling direction and transverse direction.Finally,a"four-quadrant partition map"between H and R_(p0.2)/R_(m) was established as a versatile material-screening tool,which can provide guidance for on-demand selection of titanium alloys. 展开更多
关键词 Dual-phase titanium alloy DATA-DRIVEN hardness Mapping relationship
原文传递
Hybrid machine learning and microstructure-based approach for modeling relationship between microstructure and hardness of AA2099 Al−Li alloy
9
作者 Xiang-hui ZHU Xu-sheng YANG +3 位作者 Wei-jiu HUANG Miao GONG Xin WANG Meng-di LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3504-3520,共17页
A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation,X-ray diffractio... A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation,X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)technologies.Random forest regression(RFR)model was employed to predict hardness based on microstructural features and uncover influential factors and their rankings.The results show that the increased hardness correlates with a smaller distance from indentation to grain boundary(D_(dis))or a shorter minimum grain axis(D_(min)),a lower Schmidt factor in friction stir weld direction(SF_(FD)),and higher sine values of the angle between{111}slip plane and surface(sinθ_(min)).D_(dis) and D_(min) emerge as pivotal determinants in hardness prediction.High-angle grain boundaries imped dislocation slip,thereby increasing hardness.Crystallographic orientation also significantly influences hardness,especially in the presence of T_(1) phases along{111}Al habit planes.This effect is attributable to the variation in encountered T_(1) variants during indenter loading.Consequently,the importance ranking of microstructural features shifts depending on T_(1) phase abundance:in samples with limited T_(1) phases,D_(dis) or D_(min)>SF_(FD)>sinθ_(min),while in samples with abundant T_(1) phases,D_(dis) or D_(min)>sinθ_(min)>SF_(FD). 展开更多
关键词 machine learning T_(1)phase hardness Al−Li alloy
在线阅读 下载PDF
Correlation between hardness and SEM-EDS characterization of palm oil waste based biocoke
10
作者 Asri Gani Erdiwansyah +5 位作者 Hera Desvita Saisa Mahidin Rizalman Mamat Zulhaini Sartika Ratna Eko Sarjono 《Energy Geoscience》 EI 2024年第4期253-266,共14页
This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being ... This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions.The manufacturing temperature of biocoke may vary between 150℃ and 190℃.Utilizing SEM-EDS,we were able to characterize the microstructure and analyze the elemental composition,while the Hardness Shore D approach was used for the most complex materials.These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance.They show a positive correlation between biocoke hardness and structured carbon content.At 150℃ and 180℃,respectively,the EFB biocoke reached its maximum hardness level of 62±5.At 190℃,OPM biocoke generated a 60±5 times greater hardness than that of OPM and OPF biocoke.The OPT biocoke sample had the highest porosity with a score of 0.86,or 85.76%.Furthermore,compared to EFB biocoke,OPM and OPF biocokes had a priority of 0.84(84.20%)and 0.83(83.48%),respectively.Biocoke hardness is a quality indicator of physical and chemical qualities;the vital link between biocoke hardness,structural features,and elemental composition supports this idea. 展开更多
关键词 Biocoke Palm oil waste hardness SEM-EDS Processing temperature
在线阅读 下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
11
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
在线阅读 下载PDF
Effects of cubic carbides and La additions on WC grain morphology,hardness and toughness of WC-Co alloys 被引量:9
12
作者 张立 陈述 +3 位作者 程鑫 吴厚平 马鋆 熊湘君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1680-1685,共6页
Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally... Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed. 展开更多
关键词 cemented carbide rare earth grain growth platelet WC grain hardness TOUGHNESS
在线阅读 下载PDF
Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy 被引量:4
13
作者 陈雨 丁桦 +3 位作者 李继忠 赵敬伟 付明杰 李晓华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2524-2532,共9页
The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorim... The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness. 展开更多
关键词 aluminum alloy friction stir welding heat treatment heat input hardness
在线阅读 下载PDF
Factors Resulting in Micron Indentation Hardness Descending in Indentation Tests 被引量:1
14
作者 李敏 陈伟民 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期43-48,共6页
Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element nu... Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation,we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardn... 展开更多
关键词 NANOINDENTATION hardness indentation size effect
原文传递
Friction welding influence on microstructure,microhardness and hardness behavior of CrNiMo steel(AISI 316) 被引量:2
15
作者 Ammar Jabbar Hassan Billel Cheniti +3 位作者 Brahim Belkessa Taoufik Boukharouba Djamel Miroud Nacer-Eddine Titouche 《China Welding》 CAS 2023年第3期21-27,共7页
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP... For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions. 展开更多
关键词 friction welding austenitic stainless steel MICROSTRUCTURE MICROhardness hardness
在线阅读 下载PDF
HARDNESS PROPERTY AND WEAR RESISTANCE OF Al_2O_(3P)/ Zn-Al COMPOSITE
16
作者 陶杰 崔益华 +3 位作者 肖军 冯健 邹香甫 李顺林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期155-160,共6页
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa... The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied. 展开更多
关键词 metallic matrix composites zinc alloys wear resistance Al_2O_(3P) particles hardness value
在线阅读 下载PDF
Influence of Floating Body Effect on Radiation Hardness of PD SOI nMOSFETs
17
作者 赵洪辰 海潮和 +1 位作者 韩郑生 钱鹤 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第2期234-237,共4页
H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change... H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor. 展开更多
关键词 floating body effect radiation hardness SOI
在线阅读 下载PDF
On the Indeterminacy in Hardness of Shape Memory Alloys
18
作者 F.T.Cheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期700-702,共3页
The present communication addresses an interesting problem related to the indeterminacy in hardness of superelastic NiTi reported by Xu et al. The origin of the indeterminacy is attributed to the inadequacy of the con... The present communication addresses an interesting problem related to the indeterminacy in hardness of superelastic NiTi reported by Xu et al. The origin of the indeterminacy is attributed to the inadequacy of the conventional Vickers hardness testing measurement which does not record elastic deformation, and thus the indeterminacy may be removed with suitable techniques. Concepts of hardness in relation to deformation are clarified. Recommendations for measuring the hardness of NiTi and other elastic-plastic materials are suggested, together with comments on the advantages and disadvantages of each of these methods. 展开更多
关键词 hardness Elastic-plastic materials Elastic recovery Vickers microhardness test NITI SMA
在线阅读 下载PDF
Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects
19
作者 Youping LU Yue SU +4 位作者 Wei GE Tengfei YANG Zhanfeng YAN Yugang WANG Songqin XIA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第6期188-199,共12页
The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials.Comparing the Vickers hardness and nanohardness of the same materials quantitatively and... The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials.Comparing the Vickers hardness and nanohardness of the same materials quantitatively and establishing a correlation between them is meaningful.In this study,five representative materials—pure titanium(Ti),nickel(Ni),tungsten(W),304 coarse-grained stainless steel(CG-SS)and 304 nanocrystalline austenitic stainless steel(NG-SS)—are investigated for comparison.The results show that the relationship between Vickers hardness and nanohardness does not conform to a mathematical geometric relationship because of sink-in and pile-up effects confirmed by finite element analysis(FEA)and the results of optical microscopy.Finally,one new method was developed by excluding the effects of sink-in and pile-up in materials.With this improved correction in the projected area of the Vickers hardness and nanohardness,the two kinds of hardness become identical. 展开更多
关键词 Vickers hardness nanohardness CONVERSION
在线阅读 下载PDF
Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten 被引量:2
20
作者 刘光玉 倪颂 宋旼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3240-3246,共7页
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a... Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain. 展开更多
关键词 high purity tungsten indentation hardness indentation size effect grain boundary plastic deformation zone
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部