Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w...Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.展开更多
Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks ...Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.展开更多
Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large ...Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.展开更多
oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Se...oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Sea by the Meteorological Agency, Japan,' were used to calculate the digital characteristics of frequency distribution of sea and air temperature in 153 areas in the China Seas. Principal factor analysis and fuzzy cluster ISODATA were used to divide the China hydroclimatic area into three climatic zones including ten climatic regions. It is concluded that the characteristic values derived by this method may completely show the characteristics of frequency distribution of sea and air temperature in the studied area and the final division of hydroclimatic area is fully coincident with the author's former result [2].展开更多
Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is exp...Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is experimen- tally demonstrated with Centralised Light Sou- rce (CLS) configuration in this paper. After transmitted over 25 km Standard Single Mode Fibre (SSMF) with -16.5 dBm optical power at receiver, the Bit Error Rate (BER) is 9.5 ×10^-11. The implementations of digital domain up-conversion and down-conversion based on Field Programmable Gate Array (FPGA) are int- roduced, which can reduce the cost of In-ph- ase and Quadrature (IQ) radio frequency mix- ers utilised at transmitter and receiver. A car- rier synchronization algorithm is implemented for compensating carrier offset. A channel eq- ualization algorithm is adopted for compen- sating the damage of channel. A new structure of Frequency Synchronization Unit (FSU) des- igned in FPGA is also proposed to cope with the frequency shifting at receiver.展开更多
Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchroniz...Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.展开更多
This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OF...This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms...In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.展开更多
To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox,...To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.展开更多
Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In th...Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.展开更多
The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by th...The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.展开更多
This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each mo...This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.展开更多
Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
A low noise oscillator is a crucial component in determining system performance in modern communication,microwave spectroscopy,microwave-based sensing(including radar and remote sensing),and metrology systems.In recen...A low noise oscillator is a crucial component in determining system performance in modern communication,microwave spectroscopy,microwave-based sensing(including radar and remote sensing),and metrology systems.In recent years,ultra-low phase noise photonic microwave oscillators based on optical frequency division have become a paradigm shift for the generation of high performance microwave signals.In this work,we report on-chip low phase noise photonic microwave generation based on spiral resonator referenced lasers and an integrated electro-optical frequency comb.Dual lasers are co-locked to an ultra-high-Q silicon nitride spiral resonator and their relative phase noise is measured below the cavity thermal noise limit,resulting in record low onchip optical phase noise.A broadband integrated electro-optic frequency comb is utilized to divide down the relative phase noise of the spiral resonator referenced lasers to the microwave domain,resulting in recordlow phase noise for chip-based oscillators(-69 d Bc∕Hz at 10 Hz offset,and-144 d Bc∕Hz at 10 k Hz offset for a 10 GHz carrier scaled from 37.3 GHz output).The exceptional phase noise performance,planar chip design,high technology readiness level,and foundry-ready processing of the current work represent a major advance of integrated photonic microwave oscillators.展开更多
This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorit...This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.展开更多
For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform ...For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window,...Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.展开更多
基金supported by the National Science and Technology Major Project(No.2011ZX05007-006)the 973 Program of China(No.2013CB228604)the major Project of Petrochina(No.2014B-0610)
文摘Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.
文摘Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.
基金Supported by the Educational Science Research Project of Hubei Province(B2014243)
文摘Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.
文摘oceanographic data files on the China Seas prepared by the National Marine Data and Information Service, SOA, China and the '30-year (1953-1982) Reports of Sea Surface Monthly Mean Temperature in the East China Sea by the Meteorological Agency, Japan,' were used to calculate the digital characteristics of frequency distribution of sea and air temperature in 153 areas in the China Seas. Principal factor analysis and fuzzy cluster ISODATA were used to divide the China hydroclimatic area into three climatic zones including ten climatic regions. It is concluded that the characteristic values derived by this method may completely show the characteristics of frequency distribution of sea and air temperature in the studied area and the final division of hydroclimatic area is fully coincident with the author's former result [2].
基金ACKNOWLEDGEMENT This work was supported in part by the Na- tional Natural Science Foundation of China under Grants No. 61271192, No. 60932004 the National High Technology Research and Development of China (863 Program) under Grant No. 2013AA013401 and the National Basic Research Program of China under Grant No. 2013CB329204.
文摘Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is experimen- tally demonstrated with Centralised Light Sou- rce (CLS) configuration in this paper. After transmitted over 25 km Standard Single Mode Fibre (SSMF) with -16.5 dBm optical power at receiver, the Bit Error Rate (BER) is 9.5 ×10^-11. The implementations of digital domain up-conversion and down-conversion based on Field Programmable Gate Array (FPGA) are int- roduced, which can reduce the cost of In-ph- ase and Quadrature (IQ) radio frequency mix- ers utilised at transmitter and receiver. A car- rier synchronization algorithm is implemented for compensating carrier offset. A channel eq- ualization algorithm is adopted for compen- sating the damage of channel. A new structure of Frequency Synchronization Unit (FSU) des- igned in FPGA is also proposed to cope with the frequency shifting at receiver.
文摘Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.
基金the National Natural Science Foundation of China (Nos. 60332030 and 60625103)the Science and Technology Commission of Shanghai Municipality (STCSM) (No. 05DZ22102)the National High Technology Research and Development Program(863) of China (No. 2007AA01Z237)
文摘This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
基金Guangdong Province Science and Technology Guiding Project(2005B10101013)
文摘In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.
文摘To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.
基金supported by the National Research and Development Fund entitled“High Precision Characterization Technology of Natural Gas Hydrates Reservoirs”(2017YFC0307406)the projects entitled“Integrated Observation Data Integration and Application Service of Natural Resource Elements”(DD20208067)+2 种基金“Comprehensive geological survey of coastal zone and reef in the Northern Jiaodong”(ZD20220604)initiated by the China Geological Surveythe project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)“Temporal and Spatial Distribution Characteristics and Provenance of Two Stages Paleo-deltas on the Outer Shelf in the North of the East China Sea since Late Pleistocene”(41706069)organized by the National Natural Science Foundation of China。
文摘Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.
文摘The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.
文摘This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
基金Defense Advanced Research Projects Agency(HR001122C0019)。
文摘A low noise oscillator is a crucial component in determining system performance in modern communication,microwave spectroscopy,microwave-based sensing(including radar and remote sensing),and metrology systems.In recent years,ultra-low phase noise photonic microwave oscillators based on optical frequency division have become a paradigm shift for the generation of high performance microwave signals.In this work,we report on-chip low phase noise photonic microwave generation based on spiral resonator referenced lasers and an integrated electro-optical frequency comb.Dual lasers are co-locked to an ultra-high-Q silicon nitride spiral resonator and their relative phase noise is measured below the cavity thermal noise limit,resulting in record low onchip optical phase noise.A broadband integrated electro-optic frequency comb is utilized to divide down the relative phase noise of the spiral resonator referenced lasers to the microwave domain,resulting in recordlow phase noise for chip-based oscillators(-69 d Bc∕Hz at 10 Hz offset,and-144 d Bc∕Hz at 10 k Hz offset for a 10 GHz carrier scaled from 37.3 GHz output).The exceptional phase noise performance,planar chip design,high technology readiness level,and foundry-ready processing of the current work represent a major advance of integrated photonic microwave oscillators.
基金supported by the National Natural Science Foundation of China(60872026)the Natural Science Foundation of Tianjin(09JCZDJC16900)
文摘This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.
基金supported by the National Natural Science Foundation of China(60672047).
文摘For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金supported by the National Natural Science Foundation of China(6130110561102069)+2 种基金the China Postdoctoral Science Foundation Funded Project(2013M531351)the Nanjing University of Aeronautics and Astronautics Founding(NN2012022)the Open Fund of Graduate Innovated Base(Laboratory)for the Nanjing University of Aeronautics and Astronautics(KFJJ120219)
文摘Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.