期刊文献+
共找到3,571篇文章
< 1 2 179 >
每页显示 20 50 100
Design and Ground Verification for Vision-Based Relative Navigation Systems of Microsatellites
1
作者 DU Ronghua LIAO Wenhe ZHANG Xiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期37-55,共19页
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho... This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration. 展开更多
关键词 microsatellites vision-based relative navigation optical simulator ground verification angles-only navigation
在线阅读 下载PDF
Ground Motion Simulation Via Generative Adversarial Network
2
作者 Kai Chen Hua Pan +1 位作者 Meng Zhang Zhi-Heng Li 《Applied Geophysics》 2025年第3期684-697,893,894,共16页
This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,... This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,particularly suited for regions with limited seismic data.Herein,we report a generative adversarial network(GAN)framework capable of simulating strong ground motions under various environmental conditions using only a small set of real earthquake records.The constructed GAN model generates ground motions based on continuous physical variables such as source distance,site conditions,and magnitude,effectively capturing the complexity and diversity of ground motions under different scenarios.This capability allows the proposed model to approximate real seismic data,making it applicable to a wide range of engineering purposes.Using the Shandong Pingyuan earthquake as an example,a specialized dataset was constructed based on regional real ground motion records.The response spectrum at target locations was obtained through inverse distance-weighted interpolation of actual response spectra,followed by continuous wavelet transform to derive the ground motion time histories at these locations.Through iterative parameter adjustments,the constructed GAN model learned the probability distribution of strong-motion data for this event.The trained model generated three-component ground-motion time histories with clear P-wave and S-wave characteristics,accurately reflecting the non-stationary nature of seismic records.Statistical comparisons between synthetic and real response spectra,waveform envelopes,and peak ground acceleration show a high degree of similarity,underscoring the effectiveness of the model in replicating both the statistical and physical characteristics of real ground motions.These findings validate the feasibility of GANs for generating realistic earthquake data in data-scarce regions,providing a reliable approach for enriching regional ground motion databases.Additionally,the results suggest that GAN-based networks are a powerful tool for building predictive models in seismic hazard analysis. 展开更多
关键词 ground motion simulation Machine learning Generative adversarial networks Wavelet transform
在线阅读 下载PDF
Integrated source-site effects on seismic intensity in the 2025 Myanmar earthquake from the three-component ground motion simulations by stochastic finite-fault method
3
作者 Wang Hongwei Wen Ruizhi +3 位作者 Peng Zhong Ren Yefei Qiang Shengyin Liu Ye 《Earthquake Engineering and Engineering Vibration》 2025年第4期901-915,共15页
The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improv... The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns. 展开更多
关键词 2025 Myanmar earthquake stochastic finite-fault method ground motion simulation seismic intensity source-site effects
在线阅读 下载PDF
The Simulation of Grinding Wheels and Ground Surface Roughness Based on Virtual Reality Technology 被引量:29
4
作者 GONG Ya-dong, WANG Bin, WANG Wan-Shan (School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110004, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期29-,共1页
The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simul... The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are made with OpenGL tool. The choice of grinding wheels, the forecast of ground surface quality and some simulation results can be realized by interactively inputting grinding parameters. The paper applies virtual reality technology to grinding process,makes the model of virtual grinding wheel and simulates the grinding process. The roughness of ground surface is showed in three-dimensional images, and therefore the grinding technology is studied. Computer simulation can not only be used as a shortcut to analyze and research the grinding process, but also increase the research scope and content. The virtual reality technology used in the paper is an advanced visualized simulation with interaction. The surface roughness Ra on simulated ground workpiece can be calculated by the arithmetic average of contour warp absolute value in sampling length of simulated ground workpiece. The parameters of virtual wheel and simulated grinding process can be changed by interaction input, so the simulated results in the desired grinding condition are gained. The effect of each parameter to ground surface can be analyzed by comparing the grinding results in different condition. 展开更多
关键词 virtual reality simulation ground surface roughness
在线阅读 下载PDF
Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion 被引量:18
5
作者 Yubing Yang Xiongyao Xie Rulu Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期373-384,共12页
To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit d... To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit dynamic nonlinear finite element software ANSYS/LS-DYNA. The blast induced wave propagation in the soil and the tunnel, and the von Mises effective stress and acceleration of the tunnel lining were presented, and the safety of the tunnel lining was evaluated based on the failure criterion. Besides, the parametric study of the soil was also carried out. The numerical results indicate that the upper part of the tunnel lining cross-section with directions ranging from 0° to 22.5° and horizontal distances 0 to 7 m away from the explosive center are the vulnerable areas, and the metro tunnel might be safe when tunnel depth is more than 7 m and TNT charge on the ground is no more than 500 kg, and the selection of soil parameters should be paid more attentions to conduct a more precise analysis. 展开更多
关键词 ground surface explosion numerical simulation metro tunnel dynamic response
在线阅读 下载PDF
Dominant pulse simulation of near fault ground motions 被引量:12
6
作者 S.R. Hoseini Vaez M.K. Sharbatdar +2 位作者 G. Ghodrati Amiri H. Naderpour A. Kheyroddin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期267-278,共12页
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve... In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility. 展开更多
关键词 dominant pulse near fault ground motions forward directivity response spectra simulation
在线阅读 下载PDF
Simulation of spatially correlated earthquake ground motions for engineering purposes 被引量:7
7
作者 Wu Yongxin Gao Yufeng Li Dayong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期163-173,共11页
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ... A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads. 展开更多
关键词 ground motions simulation root operation incoherency effect wave-passage effect site-response effect
在线阅读 下载PDF
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:8
8
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
在线阅读 下载PDF
Numerical simulation of artificial ground freezing in a fluid-saturated rock mass with account for filtration and mechanical processes 被引量:4
9
作者 Ivan A. Panteleev Anastasiia A. Kostina +1 位作者 Oleg A. Plekhov Lev Yu. Levin 《Research in Cold and Arid Regions》 CSCD 2017年第4期363-377,共15页
This study is devoted to the numerical simulation of the artificial ground freezing process in a fluid-saturated rock mass of the potassium salt deposit. A coupled model of nonstationary thermal conductivity, filtrati... This study is devoted to the numerical simulation of the artificial ground freezing process in a fluid-saturated rock mass of the potassium salt deposit. A coupled model of nonstationary thermal conductivity, filtration and thermo-poroelasticity,which takes into account dependence of the physical properties on temperature and pressure, is proposed on the basis of the accepted hypotheses. The considered area is a cylinder with a depth of 256 meters and diameter of 26.5 meters and includes 13 layers with different thermophysical and filtration properties. Numerical simulation was carried out by the finite-element method. It has been shown that substantial ice wall formation occurs non-uniformly along the layers. This can be connected with geometry of the freezing wells and with difference in physical properties. The average width of the ice wall in each layer was calculated. It was demonstrated that two toroidal convective cells induced by thermogravitational convection were created from the very beginning of the freezing process. The effect of the constant seepage flow on the ice wall formation was investigated. It was shown that the presence of the slow flow lead to the delay in ice wall closure. In case of the flow with a velocity of more than 30 mm per day, closure of the ice wall was not observed at all in the foreseeable time. 展开更多
关键词 artificial ground FREEZING numerical simulation thermogravitational CONVECTION thermo-poroelasiticity
在线阅读 下载PDF
Approximation approach to the SRM based on root decomposition in the simulation of spatially varying ground motions 被引量:3
10
作者 Wu Yongxin Gao Yufeng +2 位作者 Li Dayong Xu Changjie Ali H Mahfouz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期363-372,共10页
The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the ef... The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective. 展开更多
关键词 ground motions simulation spectral representation method spatially varying APPROXIMATION root decomposition
在线阅读 下载PDF
Finite Element Numerical Simulation of Ground Subsidence in Liangjia Colliery
11
作者 张力 刘锡良 王来 《Transactions of Tianjin University》 EI CAS 2002年第3期200-202,共3页
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the... Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery. 展开更多
关键词 ground subsidence finite element numerical simulation back-analysis of parameters
在线阅读 下载PDF
Numerical simulation study on the influence of the ground stress field on the stability of roadways 被引量:8
12
作者 ZHANG Hualei WANG Lianguo +1 位作者 GAO Feng YANG Hongbo 《Mining Science and Technology》 EI CAS 2010年第5期707-711,共5页
We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC^(3D)was used to investigate the maximum t... We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC^(3D)was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60°and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field. 展开更多
关键词 ROADWAY ground stress field generalized plane strain numerical simulation
在线阅读 下载PDF
A review of modeling,simulation,and control technologies of altitude ground test facilities for control application 被引量:5
13
作者 Xitong PEI Xi WANG +6 位作者 Jiashuai LIU Meiyin ZHU Zhihong DAN Ai HE Keqiang MIAO Louyue ZHANG Zheng XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期38-62,共25页
As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With... As the pivotal test equipment of aero-engines design,finalization,improvement,modification,etc.,the Altitude Ground Test Facilities(AGTF)plays an important role in the research and development of the aero-engines.With the rapid development of advanced high-performance aeroengine,the increasing demand of high-altitude simulation test is driving AGTF to improve its test ability and level of automation and intelligence.The modeling method,simulation tool,and control technology are the key factors to support the improvement of the AGTF control system.The main purpose of this paper is to provide an overview of modeling methods,simulation tools,and control technologies in AGTF control system for future research.First,it reviews the evolution of AGTF in the world,from the early formative stage to integration stage.Then,the mathematical modeling method of AGTF for control application is overviewed.Furthermore,the simulation tools used in the AGTF control system are overviewed from numerical simulation to hardware-in-loop simulation and further to semi-physical simulation.Meanwhile,the control technologies used in the AGTF control system are summarized from single-variable control to multivariable integrated control,and from classical control theory to modern control theory.Finally,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the modeling,simulation,and control design of AGTF for control application. 展开更多
关键词 Altitude ground test facilities Control system Modeling and simulation Robust control Temperature and pressure control
原文传递
3D simulation of near-fault strong ground motion: comparison between surface rupture fault and buried fault 被引量:2
14
作者 刘启方 袁一凡 金星 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期337-344,共8页
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element metho... In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults. 展开更多
关键词 near fault surface rupture fault long period ground motion 3D simulation
在线阅读 下载PDF
Seismic wave simulation of near-fault seismic intensity field for the 2025 Myanmar M_(w)7.7 earthquake constrained by mid-to far-field CENC seismic network data 被引量:1
15
作者 Xie Zhinan Wang Shuai +4 位作者 Yuan Yangtao Zhang Wenyue Zhou Tianyu Ma Qiang Li Shanyou 《Earthquake Engineering and Engineering Vibration》 2025年第3期629-640,I0001,共13页
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi... The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions. 展开更多
关键词 seismic wave simulation sparse seismic networks ground motion models seismic intensity feld finite-fault rupture model
在线阅读 下载PDF
Simulation of embedded heat exchangers of solar aided ground source heat pump system 被引量:1
16
作者 王芳 郑茂余 +1 位作者 邵俊鹏 李忠建 《Journal of Central South University》 SCIE EI CAS 2008年第S2期261-266,共6页
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene... Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period. 展开更多
关键词 SOLAR assisted ground source heat PUMP (ASGSHP) soil storage three DIMENSIONAL simulations HEATING and COOLING
在线阅读 下载PDF
Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model 被引量:5
17
作者 戴前伟 冯德山 何继善 《Journal of Central South University of Technology》 EI 2005年第4期478-482,共5页
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c... The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model. 展开更多
关键词 ground penetrating radar finite difference time domain method forward simulation ideal frequency dispersion relationship
在线阅读 下载PDF
Ground-motion simulation for the MW6.1 Ludian earthquake on 3 August 2014 using the stochastic finite-fault method 被引量:2
18
作者 Hongwei Wang Ruizhi Wen 《Earthquake Science》 2019年第3期101-114,共14页
The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a tota... The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a total of 200 kinematic source models for the Ludian event,which are characterized by the heterogeneous slip on the conjugated ruptured fault and the slip-dependent spreading of the rupture front.The results indicated that the heterogeneous slip and the spatial extent of the ruptured fault play dominant roles in the spatial distribution of ground motions in the near-fault area.The peak ground accelerations(PGAs)and 5%-damped pseudospectral accelerations(PSAs)at periods shorter than 0.5 s estimated on the resulting synthetics generally match well with the observations at stations with Joyner-Boore distances(RJB)greater than 20 km.The synthetic PGVs and PSAs at periods of 0.5 s and 0.75 s are in good agreement with predicted medians by the Yu14 model(Yu et al.,2014).However,the synthetic results are generally much lower than the predicted medians by BSSA14 model(Boore et al.,2014).Moreover,the ground motion variability caused by the randomness in the source rupture process was evaluated by these synthetics.The standard deviations of PSAs on the base-10 logarithmic scale,Sigma[log10(PSA)],are closely dependent on either the spectral period or the RJB.The Sigma[log10(PSA)]remains a constant approximately 0.55 at periods shorter than 0.1 s,and then increase continuously up to^0.13 as the period increases from 0.1 to 2.0 s.The Sigma[log10(PSA)]values at periods of 0.1‒2.0 s show the downward tendency as the RJB values increase.However,the Sigma[log10(PSA)]​values at periods shorter than 0.1 s decrease as the RJB values increase up to^50 km,and then increase with the increasing RJB.Furthermore,we found that the ground-motion variability shows the significant dependence on the azimuth. 展开更多
关键词 Ludian earthquake kinematic source model stochastic finite-fault simulation ground motion variability
在线阅读 下载PDF
Numerical simulation of the dynamic effects of grounding icebergs on summer circulation in Prydz Bay,Antarctica 被引量:1
19
作者 HAN Yuxin SHI Jiuxin +1 位作者 HOU Saisai XIAO Changhao 《Advances in Polar Science》 CSCD 2022年第2期135-144,共10页
The Regional Ocean Modeling System(ROMS)is employed to create a three-dimensional numerical model of the summer circulation in the Prydz Bay region,Antarctica.Consistent with the currents measured using an underway ac... The Regional Ocean Modeling System(ROMS)is employed to create a three-dimensional numerical model of the summer circulation in the Prydz Bay region,Antarctica.Consistent with the currents measured using an underway acoustic Doppler current profiler during a Chinese cruise,the simulated current field illustrates the major features of the Prydz Bay circulation,including the Antarctic Slope Current(ASC)along the continental shelf break,the cyclonic Prydz Bay Gyre,and the Prydz Bay Eastern Coastal Current(PBECC).The effects of grounding icebergs D15 and B15 on the circulation in Prydz Bay are investigated via numerical simulations.The results indicate that these giant grounding icebergs substantially affect the flows into and within the bay,which may differ with the different grounding locations.As grounding iceberg D15 is located close to the southwestern part of the West Ice Shelf(WIS),it cuts off the coastal current along the outer edge of the WIS,and the ASC can only enter Prydz Bay from the west side of iceberg D15,whereupon it becomes a main source of the PBECC.Iceberg D15 also weakens the circulation in the bay in general.The relatively small iceberg B15 entered Prydz Bay from 2007 to 2009 and grounded on the southwestern section of the Four Ladies Bank.The numerical experiments indicate that iceberg B15 guides the ASC flowing into the bay around its west side and reduces the width of the inflow on the eastern side of the Prydz Bay Channel.The grounding of iceberg B15 has also led to adjustments of the circulation within the bay,among which the most significant is that the outflow along the western flank of Fram Bank has shifted to the west and become more intensive. 展开更多
关键词 CIRCULATION grounding iceberg numerical simulation Prydz Bay ANTARCTICA
在线阅读 下载PDF
An element-free Galerkin method for ground penetrating radar numerical simulation 被引量:2
20
作者 冯德山 郭荣文 王洪华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期261-269,共9页
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr... An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision. 展开更多
关键词 element-free Galerkin method moving least-squares method ground penetrating radar forward simulation
在线阅读 下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部