The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in r...Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.展开更多
The integrated circular economy model of farming and stock raising(ICEMFSR)has attracted increased attention as an effective model for solving the current irrational allocation of agricultural resources and realizing ...The integrated circular economy model of farming and stock raising(ICEMFSR)has attracted increased attention as an effective model for solving the current irrational allocation of agricultural resources and realizing the agricultural value-added industrial chain.This study uses emergy analysis to comprehensively examine and evaluate the economic benefits,environmental pressures,and sustainable development levels of ICEMFSR in Shucheng County,China.The results show that the ICEMFSR possesses the value of popularization with optimally allocated resources in the studied region,in which the emergy yield ratio(EYR),emergy loading ratio(ELR),and emergy sustainable index(ESI)in this model accounted for 3.59,1.25,and 2.89,respectively.This result indicates a leading position in the national agricultural system.Hence,this study constructs a new model based on the coupling of emergy evaluation and multi-objective linear programming to study ICEMFSR.Consequently,the EYR,ELR,and ESI respectively varied by +24.23%,10.40%,and +38.06%after replanning of ICEMFSR.This variation implies a significant improvement in the sustainable development level of the model.In addition,the optimized scenario design for key substances is proposed based on traceability and the reduce-reuse-recycle principle,including biogasification of crop straw and enhancement of crop scientific planting capacity.展开更多
supported by the Taishan Scholar Construction Engineering by Shandong Government the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
In this paper, we establish a model to analyze the influence of widespread use of electric vehicle on environment, society and economist based on Fuzzy Comprehensive Evaluation method. We set the fuzzy objects are int...In this paper, we establish a model to analyze the influence of widespread use of electric vehicle on environment, society and economist based on Fuzzy Comprehensive Evaluation method. We set the fuzzy objects are internal combustion engine vehicles, pure electric vehicles and hybrid electric vehicles. Considering the difference of environment, society and economics, we use of three different kinds to define the fuzzy evaluation factor sets. According to the data and calculating results, we finally obtain fuzzy synthetical evaluation matrix. Through comparing and analysis, we draw such conclusion that the widespread using of electric vehicle is benefit for both environment and economics, while has disadvantageous influence for some aspects on society. In Section 3, we establish a model to estimate the influence of widespread use of electric vehicles on energy saving. According to the proportion of coal resources in the whole energies, we use Linear Regression Model to forecast the development situation in the following several years. Contrasting energy consumptions of electric vehicles and internal combustion engine vehicles, we calculate the whole energies saved by widespread use of electric vehicles. In Section 4, we establish a multi-objective programming model to plan the number and type of power station. Considering the thermal power, hydropower, nuclear power and solar power as four ways, combined with the funds of setting up power station, running funds and the cost of dealing with the pollutants, we find the objective function and four constraints, and finally we reach optimal solution using lingo software.展开更多
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:...In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.展开更多
Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to ...Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.展开更多
Based on the theory of optimization,we use edges and angles of cells to represent the geometric quality of computational grids,employ the local gradients of the flow variables to describe the variation of flow field,a...Based on the theory of optimization,we use edges and angles of cells to represent the geometric quality of computational grids,employ the local gradients of the flow variables to describe the variation of flow field,and construct a multi-objective programming model.The solution of this optimization problem gives appropriate balance between the geometric quality and adaptation of grids.By solving the optimization problem,we propose a new grid rezoning method,which not only keeps good geometric quality of grids,but also can track rapid changes in the flow field.In particular,it performs well for some complex concave domains with corners.We also incorporate the rezoningmethod into anArbitrary Lagrangian-Eulerian(ALE)method which is widely used in the simulation of high-speed multi-material flows.The proposed rezoning and ALE methods of this paper are tested by a number of numerical examples with complex concave domains and compared with some other rezoning methods.The numerical results validate the robustness of the proposed methods.展开更多
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.
基金supported by National Key R&D Plan[Grant number.2016YFC0502805]National Natural Science Foundation of China[Grant number.71974116]+2 种基金Shandong Natural Science Foundation[Grant number.ZR2019MG009]Shandong Province Social Science Planning Research Project[Grant number.20CGLJ13]Taishan Scholar Project[Grant number.tsqn202103010].
文摘The integrated circular economy model of farming and stock raising(ICEMFSR)has attracted increased attention as an effective model for solving the current irrational allocation of agricultural resources and realizing the agricultural value-added industrial chain.This study uses emergy analysis to comprehensively examine and evaluate the economic benefits,environmental pressures,and sustainable development levels of ICEMFSR in Shucheng County,China.The results show that the ICEMFSR possesses the value of popularization with optimally allocated resources in the studied region,in which the emergy yield ratio(EYR),emergy loading ratio(ELR),and emergy sustainable index(ESI)in this model accounted for 3.59,1.25,and 2.89,respectively.This result indicates a leading position in the national agricultural system.Hence,this study constructs a new model based on the coupling of emergy evaluation and multi-objective linear programming to study ICEMFSR.Consequently,the EYR,ELR,and ESI respectively varied by +24.23%,10.40%,and +38.06%after replanning of ICEMFSR.This variation implies a significant improvement in the sustainable development level of the model.In addition,the optimized scenario design for key substances is proposed based on traceability and the reduce-reuse-recycle principle,including biogasification of crop straw and enhancement of crop scientific planting capacity.
基金supported by the National Natural Science Foundation of China under Grant Nos.71125005,70871108,and 70810107020Outstanding Talents Funds of Organization Department,Beijing Committee of CPC
文摘supported by the Taishan Scholar Construction Engineering by Shandong Government the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
文摘In this paper, we establish a model to analyze the influence of widespread use of electric vehicle on environment, society and economist based on Fuzzy Comprehensive Evaluation method. We set the fuzzy objects are internal combustion engine vehicles, pure electric vehicles and hybrid electric vehicles. Considering the difference of environment, society and economics, we use of three different kinds to define the fuzzy evaluation factor sets. According to the data and calculating results, we finally obtain fuzzy synthetical evaluation matrix. Through comparing and analysis, we draw such conclusion that the widespread using of electric vehicle is benefit for both environment and economics, while has disadvantageous influence for some aspects on society. In Section 3, we establish a model to estimate the influence of widespread use of electric vehicles on energy saving. According to the proportion of coal resources in the whole energies, we use Linear Regression Model to forecast the development situation in the following several years. Contrasting energy consumptions of electric vehicles and internal combustion engine vehicles, we calculate the whole energies saved by widespread use of electric vehicles. In Section 4, we establish a multi-objective programming model to plan the number and type of power station. Considering the thermal power, hydropower, nuclear power and solar power as four ways, combined with the funds of setting up power station, running funds and the cost of dealing with the pollutants, we find the objective function and four constraints, and finally we reach optimal solution using lingo software.
文摘In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.
基金the Knowledge Innovation Project of Chinese Academy of Sciences (NO.KZCX2-YW-Q06-1-3)the Ministry of Science and Technology of China for"973"project(NO.2010CB428404)
文摘Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.
文摘Based on the theory of optimization,we use edges and angles of cells to represent the geometric quality of computational grids,employ the local gradients of the flow variables to describe the variation of flow field,and construct a multi-objective programming model.The solution of this optimization problem gives appropriate balance between the geometric quality and adaptation of grids.By solving the optimization problem,we propose a new grid rezoning method,which not only keeps good geometric quality of grids,but also can track rapid changes in the flow field.In particular,it performs well for some complex concave domains with corners.We also incorporate the rezoningmethod into anArbitrary Lagrangian-Eulerian(ALE)method which is widely used in the simulation of high-speed multi-material flows.The proposed rezoning and ALE methods of this paper are tested by a number of numerical examples with complex concave domains and compared with some other rezoning methods.The numerical results validate the robustness of the proposed methods.