Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p...With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev...Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ...Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.展开更多
As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security ...As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.展开更多
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the fi...This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.展开更多
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack...The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes...Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.展开更多
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
基金funded by the Hunan Provincial Natural Science Foundation of China(Grant No.2025JJ70105)the Hunan Provincial College Students’Innovation and Entrepreneurship Training Program(Project No.S202411342056)The article processing charge(APC)was funded by the Project No.2025JJ70105.
文摘With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金funded by the National Key Research and Development Program of China(Grant No.2024YFE0209000)the NSFC(Grant No.U23B2019).
文摘Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)support program(IITP-2025-RS-2023-00259497)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Republic of Korea government(MSIT)(No.IITP-2025-RS-2023-00254129+1 种基金Graduate School of Metaverse Convergence(Sungkyunkwan University))was supported by the Basic Science Research Program of the National Research Foundation(NRF)funded by the Republic of Korean government(MSIT)(No.RS-2024-00346737).
文摘Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.
基金supported by the Key Project of Joint Fund of the National Natural Science Foundation of China“Research on Key Technologies and Demonstration Applications for Trusted and Secure Data Circulation and Trading”(U24A20241)the National Natural Science Foundation of China“Research on Trusted Theories and Key Technologies of Data Security Trading Based on Blockchain”(62202118)+4 种基金the Major Scientific and Technological Special Project of Guizhou Province([2024]014)Scientific and Technological Research Projects from the Guizhou Education Department(Qian jiao ji[2023]003)the Hundred-Level Innovative Talent Project of the Guizhou Provincial Science and Technology Department(Qiankehe Platform Talent-GCC[2023]018)the Major Project of Guizhou Province“Research and Application of Key Technologies for Trusted Large Models Oriented to Public Big Data”(Qiankehe Major Project[2024]003)the Guizhou Province Computational Power Network Security Protection Science and Technology Innovation Talent Team(Qiankehe Talent CXTD[2025]029).
文摘As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金This work is part of the‘Intelligent and Cyber-Secure Platform for Adaptive Optimization in the Simultaneous Operation of Heterogeneous Autonomous Robots(PICRAH4.0)’with reference MIG-20232082,funded by MCIN/AEI/10.13039/501100011033supported by the Universidad Internacional de La Rioja(UNIR)through the Precompetitive Research Project entitled“Nuevos Horizontes en Internet de las Cosas y NewSpace(NEWIOT)”,reference PP-2024-13,funded under the 2024 Call for Research Projects.
文摘This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.
基金funded by the Science and Technology Project of State Grid Corporation of China(5108-202355437A-3-2-ZN).
文摘The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金supported by the Zhongyuan University of Technology Discipline Backbone Teacher Support Program Project(No.GG202417)the Key Research and Development Program of Henan under Grant 251111212000.
文摘Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.