期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Recognition of carrier-based aircraft flight deck operations based on dynamic graph
1
作者 Xingyu GUO Jiaxin LI +3 位作者 Hua WANG Junnan LIU Yafei LI Mingliang XU 《Chinese Journal of Aeronautics》 2025年第3期474-490,共17页
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-... Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method. 展开更多
关键词 Carrier-based aircraft Flight deck operation Operation recognition Long spatial-temporal trajectories Dynamic graph Biased random walk graph embeddings
原文传递
Learning Context-based Embeddings for Knowledge Graph Completion 被引量:6
2
作者 Fei Pu Zhongwei Zhang +1 位作者 Yan Feng Bailin Yang 《Journal of Data and Information Science》 CSCD 2022年第2期84-106,共23页
Purpose:Due to the incompleteness nature of knowledge graphs(KGs),the task of predicting missing links between entities becomes important.Many previous approaches are static,this posed a notable problem that all meani... Purpose:Due to the incompleteness nature of knowledge graphs(KGs),the task of predicting missing links between entities becomes important.Many previous approaches are static,this posed a notable problem that all meanings of a polysemous entity share one embedding vector.This study aims to propose a polysemous embedding approach,named KG embedding under relational contexts(ContE for short),for missing link prediction.Design/methodology/approach:ContE models and infers different relationship patterns by considering the context of the relationship,which is implicit in the local neighborhood of the relationship.The forward and backward impacts of the relationship in ContE are mapped to two different embedding vectors,which represent the contextual information of the relationship.Then,according to the position of the entity,the entity’s polysemous representation is obtained by adding its static embedding vector to the corresponding context vector of the relationship.Findings:ContE is a fully expressive,that is,given any ground truth over the triples,there are embedding assignments to entities and relations that can precisely separate the true triples from false ones.ContE is capable of modeling four connectivity patterns such as symmetry,antisymmetry,inversion and composition.Research limitations:ContE needs to do a grid search to find best parameters to get best performance in practice,which is a time-consuming task.Sometimes,it requires longer entity vectors to get better performance than some other models.Practical implications:ContE is a bilinear model,which is a quite simple model that could be applied to large-scale KGs.By considering contexts of relations,ContE can distinguish the exact meaning of an entity in different triples so that when performing compositional reasoning,it is capable to infer the connectivity patterns of relations and achieves good performance on link prediction tasks.Originality/value:ContE considers the contexts of entities in terms of their positions in triples and the relationships they link to.It decomposes a relation vector into two vectors,namely,forward impact vector and backward impact vector in order to capture the relational contexts.ContE has the same low computational complexity as TransE.Therefore,it provides a new approach for contextualized knowledge graph embedding. 展开更多
关键词 Full expressiveness Relational contexts Knowledge graph embedding Relation patterns Link prediction
在线阅读 下载PDF
An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph
3
作者 Jian He Yanling Wu +4 位作者 Linxi Yuan Jiangguo Qiu Menglong Li Xuemei Pu Yanzhi Guo 《Journal of Pharmaceutical Analysis》 2025年第8期1902-1915,共14页
Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes ... Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes are present in the training model),without special attention to the unseen DGIs(both drugs and genes are absent in the training model).In view of this,this study,for the first time,proposed an inductive learning-based model for the precise identification of unseen DGIs.In our study,by integrating disease nodes to avoid data sparsity,a multi-relational drug-disease-gene(DDG)graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions.Following the extraction of graph features by utilizing graph embedding algorithms,our next step was the retrieval of the attributes of individual gene and drug nodes.In this way,a hybrid feature characterization was represented by integrating graph features and node attributes.Machine learning(ML)models were built,enabling the fulfillment of transductive predictions of unknown DGIs.To realize inductive learning,this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights,enabling inductive predictions for the unseen DGIs.Consequently,the final model was superior to existing models,with significant improvement in predicting both external unknown and unseen DGIs.The practical feasibility of our model was further confirmed through case study and molecular docking.In summary,this study establishes an efficient data-driven approach through the proposed modeling,suggesting its value as a promising tool for accelerating drug discovery and repurposing. 展开更多
关键词 Drug-gene interactions Inductive learning Multi-relational drug-disease-gene graph graph embedding Node attributes Machine learning
暂未订购
Fault Detection in Wind Turbine Bearings by Coupling Knowledge Graph and Machine Learning Approach
4
作者 Paras Garg Arvind Keprate +2 位作者 Gunjan Soni A.P.S.Rathore O.P.Yadav 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第4期250-263,共14页
Fault sensing in wind turbine(WT)generator bearings is essential for ensuring reliability and holding down maintenance costs.Feeding raw sensor data to machine learning(ML)model often overlooks the enveloping interdep... Fault sensing in wind turbine(WT)generator bearings is essential for ensuring reliability and holding down maintenance costs.Feeding raw sensor data to machine learning(ML)model often overlooks the enveloping interdependencies between system elements.This study proposes a new hybrid method that combines the domain knowledge via knowledge graphs(KGs)and the traditional feature-based data.Incorporation of contextual relationships through construction of graph embedding methods,such as Node2Vec,can capture meaningful information,such as the relationships among key parameters(e.g.wind speed,rotor Revolutions Per Minute(RPM),and temperature)in the enriched feature representations.These node embeddings,when augmented with the original data,can be used to allow the model to learn and generalize better.As shown in results achieved on experimental data,the augmented ML model(with KG)is much better at predicting with the help of accuracy and error measure compared to traditional ML methods.Paired t-test analysis proves the statistical validity of this improvement.Moreover,graph-based feature importance increases the interpretability of the model and helps to uncover the structurally significant variables that are otherwise ignored by the common methods.The approach provides an excellent,knowledge-guided manner through which intelligent fault detection can be executed on WT systems. 展开更多
关键词 anomaly detection knowledge graph embedding machine learning wind turbine fault detection
在线阅读 下载PDF
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
5
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Collective Entity Alignment for Knowledge Fusion of Power Grid Dispatching Knowledge Graphs 被引量:7
6
作者 Linyao Yang Chen Lv +4 位作者 Xiao Wang Ji Qiao Weiping Ding Jun Zhang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1990-2004,共15页
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system... Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs. 展开更多
关键词 Entity alignment integer programming(IP) knowledge fusion knowledge graph embedding power dispatch
在线阅读 下载PDF
Fusion Recommendation System Based on Collaborative Filtering and Knowledge Graph 被引量:3
7
作者 Donglei Lu Dongjie Zhu +6 位作者 Haiwen Du Yundong Sun Yansong Wang Xiaofang Li Rongning Qu Ning Cao Russell Higgs 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1133-1146,共14页
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. F... The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods. 展开更多
关键词 Fusion recommendation system knowledge graph graph embedding
在线阅读 下载PDF
Graph-Based Dimensionality Reduction for Hyperspectral Imagery: A Review 被引量:1
8
作者 Zhen Ye Shihao Shi +4 位作者 Zhan Cao Lin Bai Cuiling Li Tao Sun Yongqiang Xi 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期91-112,共22页
Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the... Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the lack of training samples and the high computational cost are the inevitable obstacles in the design of classifier.In order to solve these problems,dimensionality reduction is usually adopted.Recently,graph-based dimensionality reduction has become a hot topic.In this paper,the graph-based methods for HSI dimensionality reduction are summarized from the following aspects.1)The traditional graph-based methods employ Euclidean distance to explore the local information of samples in spectral feature space.2)The dimensionality-reduction methods based on sparse or collaborative representation regard the sparse or collaborative coefficients as graph weights to effectively reduce reconstruction errors and represent most important information of HSI in the dictionary.3)Improved methods based on sparse or collaborative graph have made great progress by considering global low-rank information,local intra-class information and spatial information.In order to compare typical techniques,three real HSI datasets were used to carry out relevant experiments,and then the experimental results were analysed and discussed.Finally,the future development of this research field is prospected. 展开更多
关键词 hyperspectral image dimensionality reduction graph embedding sparse representation collaborative representation
在线阅读 下载PDF
CYCLE SPACES OF GRAPHS ON THE SPHERE AND THE PROJECTIVE PLANE 被引量:1
9
作者 任韩 刘彦佩 +1 位作者 马登举 卢俊杰 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期41-49,共9页
Cycle base theory of a graph has been well studied in abstract mathematical field such matroid theory as Whitney and Tutte did and found many applications in prat-ical uses such as electric circuit theory and structur... Cycle base theory of a graph has been well studied in abstract mathematical field such matroid theory as Whitney and Tutte did and found many applications in prat-ical uses such as electric circuit theory and structure analysis, etc. In this paper graph embedding theory is used to investigate cycle base structures of a 2-(edge)-connected graph on the sphere and the projective plane and it is shown that short cycles do generate the cycle spaces in the case of 'small face-embeddings'. As applications the authors find the exact formulae for the minimum lengthes of cycle bases of some types of graphs and present several known results. Infinite examples shows that the conditions in their main results are best possible and there are many 3-connected planar graphs whose minimum cycle bases can not be determined by the planar formulae but may be located by re-embedding them into the projective plane. 展开更多
关键词 Cycle base facial cycle graph embedding
在线阅读 下载PDF
Graph-Based Feature Learning for Cross-Project Software Defect Prediction 被引量:1
10
作者 Ahmed Abdu Zhengjun Zhai +2 位作者 Hakim A.Abdo Redhwan Algabri Sungon Lee 《Computers, Materials & Continua》 SCIE EI 2023年第10期161-180,共20页
Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches... Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction. 展开更多
关键词 Cross-project defect prediction graphs features deep learning graph embedding
在线阅读 下载PDF
Joint learning based on multi-shaped filters for knowledge graph completion 被引量:2
11
作者 Li Shaojie Chen Shudong +1 位作者 Ouyang Xiaoye Gong Lichen 《High Technology Letters》 EI CAS 2021年第1期43-52,共10页
To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge gra... To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge graph completion(KGC).Related research work has shown the superiority of convolutional neural networks(CNNs)in extracting semantic features of triple embeddings.However,these researches use only one single-shaped filter and fail to extract semantic features of different granularity.To solve this problem,ConvKG exploits multi-shaped filters to co-convolute on the triple embeddings,joint learning semantic features of different granularity.Different shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of different granularity among triple elements.Experimental results confirm the strength of joint learning,and compared with state-of-the-art CNN-based KGC models,ConvKG achieves the better mean rank(MR)and Hits@10 metrics on dataset WN18 RR,and the better MR on dataset FB15k-237. 展开更多
关键词 knowledge graph embedding(KGE) knowledge graph completion(KGC) convolutional neural network(CNN) joint learning multi-shaped filter
在线阅读 下载PDF
Hybrid Recommendation Based on Graph Embedding 被引量:1
12
作者 Cheng Zeng Haifeng Zhang +2 位作者 Junwei Ren Chaodong Wen Peng He 《China Communications》 SCIE CSCD 2021年第11期243-256,共14页
In recent years,online reservation systems of country hotel have become increasingly popular in rural areas.How to accurately recommend the houses of country hotel to the users is an urgent problem to be solved.Aiming... In recent years,online reservation systems of country hotel have become increasingly popular in rural areas.How to accurately recommend the houses of country hotel to the users is an urgent problem to be solved.Aiming at the problem of cold start and data sparseness in recommendation,a Hybrid Recommendation method based on Graph Embedding(HRGE)is proposed.First,three types of network are built,including user-user network based on user tag,househouse network based on house tag,and user-user network based on user behavior.Then,by using the method of graph embedding,three types of network are respectively embedded into low-dimensional vectors to obtain the characterization vectors of nodes.Finally,these characterization vectors are used to make a hybrid recommendation.The datasets in this paper are derived from the Country Hotel Reservation System in Guizhou Province.The experimental results show that,compared with traditional recommendation algorithms,the comprehensive evaluation index(F1)of the HRGE is improved by 20% and the Mean Average Precision(MAP)is increased by 11%. 展开更多
关键词 graph embedding hybrid recommendation collaborative filtering tagging
在线阅读 下载PDF
Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation 被引量:1
13
作者 LIU Guoqiang GONG Renbin +4 位作者 SHI Yujiang WANG Zhenzhen MI Lan YUAN Chao ZHONG Jibin 《Petroleum Exploration and Development》 CSCD 2022年第3期572-585,共14页
Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting charac... Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields. 展开更多
关键词 well logging hydrocarbon bearing formation identification knowledge graph graph embedding technique intelligent identification neural network
在线阅读 下载PDF
Task Graph Reduction Algorithm for Hardware/Software Partitioning 被引量:2
14
作者 LI Hui LIU Wenjui +2 位作者 WU Jigang JIANG Guiyuan HAN Honglei 《Wuhan University Journal of Natural Sciences》 CAS 2012年第2期126-130,共5页
Hardware/software(HW/SW) partitioning is one of the key processes in an embedded system.It is used to determine which system components are assigned to hardware and which are processed by software.In contrast with p... Hardware/software(HW/SW) partitioning is one of the key processes in an embedded system.It is used to determine which system components are assigned to hardware and which are processed by software.In contrast with previous research that focuses on developing efficient heuristic,we focus on the pre-process of the task graph before the HW/SW partitioning in this paper,that is,enumerating all the sub-graphs that meet the requirements.Experimental results showed that the original graph can be reduced to 67% in the worst-case scenario and 58% in the best-case scenario.In conclusion,the reduced task graph saved hardware area while improving partitioning speed and accuracy. 展开更多
关键词 HW/SW partitioning task graph algorithm embedded system
原文传递
On a Conjecture of Embeddable Graphs 被引量:1
15
作者 PENG Yanling WANG Hong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第2期123-127,共5页
An embedding of a graph G(into its complement G~c) is a permutation s on V(G) such that if any edge xy belongs to E, then s(x)s( y) does not belong to E(so G is a subgraph of its complement G~c). Faudree, Rousseau, Sc... An embedding of a graph G(into its complement G~c) is a permutation s on V(G) such that if any edge xy belongs to E, then s(x)s( y) does not belong to E(so G is a subgraph of its complement G~c). Faudree, Rousseau, Schelp and Schuster remarked that all non-embeddable graphs with n vertices and no more than n edges are either stars or contain 3 K or 4 C as subgraphs. For this reason they have conjectured that every non-star graph which contains no cycles of lengths 3 or 4 is a subgraph of its complement. This conjecture would nicely fit with other characterization theorems which specify that all graphs, except a family of forbidden graphs, satisfy a given property or are of a given type. In this article, we prove that the conjecture is true for a family of graphs of girth 5. 展开更多
关键词 embedding of graphs packing of graphs PG-graph
原文传递
On Packing Trees into Complete Bipartite Graphs 被引量:1
16
作者 PENG Yanling WANG Hong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第3期221-222,共2页
Let B_(n)(X,Y)denote the complete bipartite graph of order n with vertex partition sets X and Y.We prove that for each tree T of order n,there is a packing of k copies of T into a complete bipartite graph B_(n+m)(X,Y)... Let B_(n)(X,Y)denote the complete bipartite graph of order n with vertex partition sets X and Y.We prove that for each tree T of order n,there is a packing of k copies of T into a complete bipartite graph B_(n+m)(X,Y).The ideal of the work comes from the"Tree packing conjecture"made by Gyráfás and Lehel.Bollobás confirmed the"Tree packing conjecture"for many small trees,who showed that one can pack T_(1),T_(2),…,T_(n/√2)into K_(n)and that a better bound would follow from a famous conjecture of Erdo s.In a similar direction,Hobbs,Bour geois and Kasiraj made the following conjecture:Any sequence of trees T_(2),…,T_(n),with T_(i)having order i,can be packed into K_(n-1,(n/2)).Further Hobbs,Bourgeois and Kasiraj proved that any two trees can be packed into a complete bipartite graph K_(n-1,(n/2)).Motivated by these results,Wang Hong proposed the conjecture:For each tree T of order n,there is a k-packing of T in some complete bipartite graph B_(n+k-1)(X,Y).In this paper,we prove a weak version of this conjecture. 展开更多
关键词 packing of graphs tree packing conjecture embedding of graph
原文传递
Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
17
作者 卢鹏丽 陈玮 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期634-645,共12页
Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlat... Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking. 展开更多
关键词 complex networks CENTRALITY joint nonnegative matrix factorization graph embedding smoothness strategy
原文传递
Adaptive Graph Embedding With Consistency and Specificity for Domain Adaptation
18
作者 Shaohua Teng Zefeng Zheng +2 位作者 Naiqi Wu Luyao Teng Wei Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2094-2107,共14页
Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabe... Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabeled target samples well.Existing approaches leverage Graph Embedding Learning to explore such a subspace. Unfortunately, due to 1) the interaction of the consistency and specificity between samples, and 2) the joint impact of the degenerated features and incorrect labels in the samples, the existing approaches might assign unsuitable similarity, which restricts their performance. In this paper, we propose an approach called adaptive graph embedding with consistency and specificity(AGE-CS) to cope with these issues. AGE-CS consists of two methods, i.e., graph embedding with consistency and specificity(GECS), and adaptive graph embedding(AGE).GECS jointly learns the similarity of samples under the geometric distance and semantic similarity metrics, while AGE adaptively adjusts the relative importance between the geometric distance and semantic similarity during the iterations. By AGE-CS,the neighborhood samples with the same label are rewarded,while the neighborhood samples with different labels are punished. As a result, compact structures are preserved, and advanced performance is achieved. Extensive experiments on five benchmark datasets demonstrate that the proposed method performs better than other Graph Embedding methods. 展开更多
关键词 Adaptive adjustment consistency and specificity domain adaptation graph embedding geometrical and semantic metrics
在线阅读 下载PDF
Exact Graph Pattern Matching:Applications,Progress and Prospects
19
作者 孙国豪 余水 +1 位作者 方秀 陆金虎 《Journal of Donghua University(English Edition)》 CAS 2023年第2期216-224,共9页
Graph pattern matching(GPM)can be used to mine the key information in graphs.Exact GPM is one of the most commonly used methods among all the GPM-related methods,which aims to exactly find all subgraphs for a given qu... Graph pattern matching(GPM)can be used to mine the key information in graphs.Exact GPM is one of the most commonly used methods among all the GPM-related methods,which aims to exactly find all subgraphs for a given query graph in a data graph.The exact GPM has been widely used in biological data analyses,social network analyses and other fields.In this paper,the applications of the exact GPM were first introduced,and the research progress of the exact GPM was summarized.Then,the related algorithms were introduced in detail,and the experiments on the state-of-the-art exact GPM algorithms were conducted to compare their performance.Based on the experimental results,the applicable scenarios of the algorithms were pointed out.New research opportunities in this area were proposed. 展开更多
关键词 graph pattern matching(GPM) exact matching subgraph isomorphism graph embedding subgraph matching
在线阅读 下载PDF
Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction
20
作者 Zefeng Gu Hua Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2497-2514,共18页
Link prediction,also known as Knowledge Graph Completion(KGC),is the common task in Knowledge Graphs(KGs)to predict missing connections between entities.Most existing methods focus on designing shallow,scalable models... Link prediction,also known as Knowledge Graph Completion(KGC),is the common task in Knowledge Graphs(KGs)to predict missing connections between entities.Most existing methods focus on designing shallow,scalable models,which have less expressive than deep,multi-layer models.Furthermore,most operations like addition,matrix multiplications or factorization are handcrafted based on a few known relation patterns in several wellknown datasets,such as FB15k,WN18,etc.However,due to the diversity and complex nature of real-world data distribution,it is inherently difficult to preset all latent patterns.To address this issue,we proposeKGE-ANS,a novel knowledge graph embedding framework for general link prediction tasks using automatic network search.KGEANS can learn a deep,multi-layer effective architecture to adapt to different datasets through neural architecture search.In addition,the general search spacewe designed is tailored forKGtasks.We performextensive experiments on benchmark datasets and the dataset constructed in this paper.The results show that our KGE-ANS outperforms several state-of-the-art methods,especially on these datasets with complex relation patterns. 展开更多
关键词 Knowledge graph embedding link prediction automatic network search
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部