岩土颗粒材料的力学响应呈现多尺度特性,开展有限元法(Finite Element Method,FEM)和离散元法(Discrete Element Method,DEM)耦合的多尺度模拟可在反映多尺度响应的同时兼顾计算效率.为此,基于国产高性能离散元软件MatDEM开发了GPU并行F...岩土颗粒材料的力学响应呈现多尺度特性,开展有限元法(Finite Element Method,FEM)和离散元法(Discrete Element Method,DEM)耦合的多尺度模拟可在反映多尺度响应的同时兼顾计算效率.为此,基于国产高性能离散元软件MatDEM开发了GPU并行FEM-DEM耦合计算程序,并结合颗粒孔隙分形特征对计算参数和结果进行分析.首先,采用多重分形理论研究了颗粒孔隙空间分布特征,确定了关键分形指标.其次,通过单元和双轴压缩试验验证了FEM-DEM耦合程序的可靠性.最后,基于双轴压缩试验研究了不同位置处表征元(Representative Volume Element,RVE)的细观响应.结果表明,RVE内孔隙空间分布具有多重分形特征,当颗粒数量超过400时,孔隙空间分布的自相似性确保了RVE内颗粒集合均匀化后输出应力-应变响应的稳定性.容量维数D_(0)和奇异指数α_(0)由于表征孔隙分布的平均信息而与RVE体应变具有线性相关性,可作为反映颗粒材料空间特征复杂性的简洁内变量.研究结果为分析工程尺度颗粒堆积体的宏-细观力学联系提供了一种方法探索.展开更多
This paper presents a combined method to model grain crushing effects with discrete element method.This method combines the two most commonly used concepts to model grain crushing in DEM,i.e.the replacement method and...This paper presents a combined method to model grain crushing effects with discrete element method.This method combines the two most commonly used concepts to model grain crushing in DEM,i.e.the replacement method and the agglomerate method,so that it is both accurate and efficient.The method can be easily implemented.The performance is shown by several DEM simulations of biaxial tests.Particles with different crush-abilities are modeled.DEM simulation results with and without grain crushing are compared and discussed.The change of grain size distribution due to grain crushing is also investigated.展开更多
This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical parti...This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.展开更多
In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow ra...In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.展开更多
In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates ...In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.展开更多
A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of inter...A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials.Most manifestations in the degradation of granular materials,such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method(DEM)simulation.In particular,the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism.It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful,for instance,in the prediction and assessment of piping disaster risk during the flood season.展开更多
The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between...The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.展开更多
The present work explains the statics of self-weight transmission restricted to a long prismatic heap inclined at an angle of repose and symmetrically formed on a rigid base. The closure of polarized principal axes wi...The present work explains the statics of self-weight transmission restricted to a long prismatic heap inclined at an angle of repose and symmetrically formed on a rigid base. The closure of polarized principal axes with the mobilized state of stress along the slope surface is employed by imposing the orientation of principal stresses on the equilibrium equations. Comparisons were made with calculations based on the finite element method using an elastic model. Moreover, experiments on sand heaps deposited on a rectangular rigid base were conducted to validate the theoretical study. The measured pressure profile generally agreed well with theoretical results.展开更多
In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including cou...In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including coupling of rigid body motion and deformation for deformable bodies, are investigated. An implicit discrete element method for block systems is developed to make visco-plastic analysis for the assemblies. Among particles, three different contact types, cohering, rubbing and sliding, are taken into account. To verify accuracy and efficiency of the numerical method, some numerical example is simulated and the results are in a satisfactory agreement with the solutions in literatures. The effects of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compact- tion on the compaction of the elasto-plastic and the visco-plastic aggregates are investigated. It is demonstrated that the effect of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compaction on the global behavior of the elasto-plastic the visco-plastic granular assemblies under compacting are considerable. The numerical model is extended to simulate the compaction of aggregates consisting of mixed particles of different viscous incompressible materials. It is indicated that, with minor modification, the method could be used in a variety of problems that can be represented using granular media, such as asphalt, polymers, aluminum, snow, food product, etc.展开更多
文摘岩土颗粒材料的力学响应呈现多尺度特性,开展有限元法(Finite Element Method,FEM)和离散元法(Discrete Element Method,DEM)耦合的多尺度模拟可在反映多尺度响应的同时兼顾计算效率.为此,基于国产高性能离散元软件MatDEM开发了GPU并行FEM-DEM耦合计算程序,并结合颗粒孔隙分形特征对计算参数和结果进行分析.首先,采用多重分形理论研究了颗粒孔隙空间分布特征,确定了关键分形指标.其次,通过单元和双轴压缩试验验证了FEM-DEM耦合程序的可靠性.最后,基于双轴压缩试验研究了不同位置处表征元(Representative Volume Element,RVE)的细观响应.结果表明,RVE内孔隙空间分布具有多重分形特征,当颗粒数量超过400时,孔隙空间分布的自相似性确保了RVE内颗粒集合均匀化后输出应力-应变响应的稳定性.容量维数D_(0)和奇异指数α_(0)由于表征孔隙分布的平均信息而与RVE体应变具有线性相关性,可作为反映颗粒材料空间特征复杂性的简洁内变量.研究结果为分析工程尺度颗粒堆积体的宏-细观力学联系提供了一种方法探索.
文摘This paper presents a combined method to model grain crushing effects with discrete element method.This method combines the two most commonly used concepts to model grain crushing in DEM,i.e.the replacement method and the agglomerate method,so that it is both accurate and efficient.The method can be easily implemented.The performance is shown by several DEM simulations of biaxial tests.Particles with different crush-abilities are modeled.DEM simulation results with and without grain crushing are compared and discussed.The change of grain size distribution due to grain crushing is also investigated.
基金supported by the Research Grants Council of Hong Kong through GRF 622910
文摘This paper presents a micromechanical study on the behavior of granular materials under confined shear using a three-dimensional Discrete Element Method (DEM). We consider rotational resistance among spherical particles in the DEM code as an approximate way to account for the effect of particle shape. Under undrained shear, it is found rotational resistance may help to increase the shear strength of a granular system and to enhance its resistance to liquefaction. The evolution of internal structure and anisotropy in granular systems with different initial conditions depict a clear bimodal character which distinguishes two contact subnetworks. In the presence of rotational resistance, a good correlation is found between an analytical stress-force-fabric relation and the DEM results, in which the normal force anisotropy plays a dominant role. The unique properties of critical state and liquefaction state in relation to granular anisotropy are also explored and discussed.
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21325628,91334108)the Mole-8.5 Supercomputing System developed by Institute of Process Engineering,Chinese Academy of Sciences
文摘In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.
基金supported by the National Natural Science Foundation of China (No. 10972162)
文摘In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing.
基金the financial support by National Natural Science Foundation of China(Grants 11432015 and 10932012)
文摘A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials.Most manifestations in the degradation of granular materials,such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method(DEM)simulation.In particular,the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism.It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful,for instance,in the prediction and assessment of piping disaster risk during the flood season.
文摘The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.
基金supported by KAKENHI Grant Numbers 23760441 and 24360193The authors would like to expresstheir gratitude to Japan Society for the Promotion of Science(JSPS)
文摘The present work explains the statics of self-weight transmission restricted to a long prismatic heap inclined at an angle of repose and symmetrically formed on a rigid base. The closure of polarized principal axes with the mobilized state of stress along the slope surface is employed by imposing the orientation of principal stresses on the equilibrium equations. Comparisons were made with calculations based on the finite element method using an elastic model. Moreover, experiments on sand heaps deposited on a rectangular rigid base were conducted to validate the theoretical study. The measured pressure profile generally agreed well with theoretical results.
文摘In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including coupling of rigid body motion and deformation for deformable bodies, are investigated. An implicit discrete element method for block systems is developed to make visco-plastic analysis for the assemblies. Among particles, three different contact types, cohering, rubbing and sliding, are taken into account. To verify accuracy and efficiency of the numerical method, some numerical example is simulated and the results are in a satisfactory agreement with the solutions in literatures. The effects of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compact- tion on the compaction of the elasto-plastic and the visco-plastic aggregates are investigated. It is demonstrated that the effect of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compaction on the global behavior of the elasto-plastic the visco-plastic granular assemblies under compacting are considerable. The numerical model is extended to simulate the compaction of aggregates consisting of mixed particles of different viscous incompressible materials. It is indicated that, with minor modification, the method could be used in a variety of problems that can be represented using granular media, such as asphalt, polymers, aluminum, snow, food product, etc.