Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy depositio...Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.展开更多
SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+...SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+20%Inconel625+20%Ti6Al4V composite and 60%SS316L+20%Inconel625+20%Inconel718 composite,were prepared.The tensile strength,elongation,yield strength,hardness,cross section area of the parent material,and composition were analysed.Results illustrate that the 60%SS316L+20%Inconel625+20%Inconel718 composite has better mechanical properties than 60%SS316L+20%Inconel625+20%Ti6Al4V composite,and the comprehensive properties of 60%SS316L+20%Inconel 625+20%Ti6Al4V composite are better than those of the parent material SS316L.Hence,the composite of 60%SS316L+20%Inconel625+20%Inconel718 is optimal.Due to its high strength,the 60%SS316L+20%Inconel625+20%Inconel718 composite has great application potential in the field of high pressure pneumatic tool and defence tool.展开更多
This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio...This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.展开更多
This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally...This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.展开更多
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc...This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.展开更多
Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by ad...Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.展开更多
Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composit...Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), mer...Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcr...This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization.展开更多
The three-phase-lag(TPL)heat conduction model is an accurate representation of the actual heat transfer process.It would be interesting to investigate how the TPL model affects the thermal fracture behavior when there...The three-phase-lag(TPL)heat conduction model is an accurate representation of the actual heat transfer process.It would be interesting to investigate how the TPL model affects the thermal fracture behavior when there are defects existing in the medium.This paper aims to analyze the thermoelastic responses of two collinear cracks within a functionally graded half-space under thermal loadings by means of the TPL model.The thermoelastic problem is transformed into a series of singular integral equations using the integral transformation methods.The transient temperature and stress intensity factors(SIFs)are obtained through the application of Chebyshev polynomials.The effects of crack spacing and non-homogeneous parameters on the transient thermoelastic responses are presented,and the results of the TPL model are compared with those of the Fourier model,Cattaneo and Vernotte(CV)model,and dual-phase-lag(DPL)model.It is shown that crack spacing and non-homogeneous parameters have important effects on the thermoelastic responses,and the fluctuation phenomenon under the TPL model is the most pronounced due to the existence of the thermal displacement lag term.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the a...This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the axial,width,and height directions,and a steady fluid flows inside the pipe.Two piezoelectric layers are attached to the upper and lower surfaces of the pipe,and are connected in series with a load resistance.The output electricity is predicted theoretically and validated by finite element(FE) simulation.The complex mechanisms regulating the energy harvesting performance are investigated,focusing particularly on the effects of 3D FG material(FGM) parameters,load resistance,fluid-structure interaction(FSI),and geometry.Numerical results indicate that among several material gradient parameters,the axial gradient index has the most significant impact.Increasing the axial and height gradient indices can markedly enhance the energy harvesting performance.The optimal resistances differ between the first two modes.Overall,the maximum power is generated at lower resistances.The FSI effect can also improve the energy harvesting performance;however,higher flow velocities may destabilize the system,causing failure of harvesting energy.This research is capable of providing new insights into the design of a pipe energy harvester in engineering applications.展开更多
The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonl...The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior.展开更多
This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated al...This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated along both the radial and circumferential directions.By transforming the proposed integral constitutive equations into the equivalent differential forms,complemented by the corresponding constitutive boundary conditions(CBCs),a well-posed mathematical formulation is established for analyzing the axisymmetric bending and buckling of annular/circular functionally graded(FG)sandwich nanoplates.The boundary conditions at the inner edge of a solid nanoplate are derived by L'H?spital's rule.The numerical solution is obtained by the generalized differential quadrature method(GDQM).The accuracy of the proposed model is validated through comparison with the data from the existing literature.A parameter study is conducted to demonstrate the effects of FG sandwich parameters,size parameters,and nonlocal gradient parameters.展开更多
In this study,the thermodynamic behaviors of the intrinsic frequency and buckling temperature of rectangular plates of functionally graded materials(FGMs)are explored based on the modified couple stress theory(MCST)an...In this study,the thermodynamic behaviors of the intrinsic frequency and buckling temperature of rectangular plates of functionally graded materials(FGMs)are explored based on the modified couple stress theory(MCST)and the novel dual powerlaw scale distribution theory.The effects of linear,homogeneous,and non-homogeneous temperature fields on the frequency and buckling temperature of FGM microplates are evaluated in detail.The results show that the porosity greatly affects the mechanical properties of FGM plates,reducing their frequency and flexural temperature compared with non-porous plates.Different temperature profiles alter plate frequencies and buckling temperatures.The presence and pattern of scale effect parameters are also shown to be crucial for the mechanical response of FGM plates.The present research aims to provide precise guidelines for the micro-electro-mechanical system(MEMS)fabrication by elucidating the complex interplay between thermal,material,and structural factors that affect the performance of FGM plates in advanced applications.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
Given the significant potential of multi-directional functionally graded materials(MFGMs)for customizable performance,it is crucial to develop versatile material models to enhance design optimization in engineering ap...Given the significant potential of multi-directional functionally graded materials(MFGMs)for customizable performance,it is crucial to develop versatile material models to enhance design optimization in engineering applications.This paper introduces a material model for an MFGM plate described by trigonometric functions,equipped with four parameters to control diverse material distributions effectively.The bending and vibration analysis of MFGM rectangular and cutout plates is carried out utilizing isogeometric analysis,which is based on a novel third-order shear deformation theory(TSDT)to account for transverse shear deformation.The present TSDT,founded on rigorous kinematics of displacements,is demonstrated to surpass other preceding theories.It is derived from an elasticity formulation,rather than relying on the hypothesis of displacements.The effectiveness of the proposed method is verified by comparing its numerical results with those of other methods reported in the relevant literature.Numerical results indicate that the structure,boundary conditions,and gradient parameters of the MFGM plate significantly influence its deflection,stress,and vibration frequency.As the periodic parameter exceeds four,the model complexity increases,causing result fluctuations.Additionally,MFGM cutout plates,when clamped on all sides,display almost identical first four vibration frequencies.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
基金National Natural Science Foundation of China(51975286)。
文摘Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.
文摘SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+20%Inconel625+20%Ti6Al4V composite and 60%SS316L+20%Inconel625+20%Inconel718 composite,were prepared.The tensile strength,elongation,yield strength,hardness,cross section area of the parent material,and composition were analysed.Results illustrate that the 60%SS316L+20%Inconel625+20%Inconel718 composite has better mechanical properties than 60%SS316L+20%Inconel625+20%Ti6Al4V composite,and the comprehensive properties of 60%SS316L+20%Inconel 625+20%Ti6Al4V composite are better than those of the parent material SS316L.Hence,the composite of 60%SS316L+20%Inconel625+20%Inconel718 is optimal.Due to its high strength,the 60%SS316L+20%Inconel625+20%Inconel718 composite has great application potential in the field of high pressure pneumatic tool and defence tool.
文摘This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.
基金supported by the National Natural Science Foundation of China(No.11772090).
文摘This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.
基金supported by the Advance Research Project of Civil Aerospace Technology(Grant No.D020304)National Nat-ural Science Foundation of China(Grant Nos.52205257 and U22B2083).
文摘This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.
基金financially supported by the Scientific Research Project Coordinatorship (BAP) of Yildiz Technical University (YTU) (Project No: FYL-2021-3825)。
文摘Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.
基金National Natural Science Foundation of China,12372025,Feng Liang,12072311,Feng Liang.
文摘Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
基金support provided by National Natural Science Foundation of China(22471018,22071008,22208018)support provided by the Shenzhen Science and Technology Program(JCYJ20220818100012025).
文摘Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
文摘This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization.
基金Project supported by the Natural Science Foundation of Shandong Province of China(No.ZR2024MA085)the Science and Technology Plan Project of Zhejiang Province of China(No.2023C03143)the Fundamental Research Funds for the Central Universities of China。
文摘The three-phase-lag(TPL)heat conduction model is an accurate representation of the actual heat transfer process.It would be interesting to investigate how the TPL model affects the thermal fracture behavior when there are defects existing in the medium.This paper aims to analyze the thermoelastic responses of two collinear cracks within a functionally graded half-space under thermal loadings by means of the TPL model.The thermoelastic problem is transformed into a series of singular integral equations using the integral transformation methods.The transient temperature and stress intensity factors(SIFs)are obtained through the application of Chebyshev polynomials.The effects of crack spacing and non-homogeneous parameters on the transient thermoelastic responses are presented,and the results of the TPL model are compared with those of the Fourier model,Cattaneo and Vernotte(CV)model,and dual-phase-lag(DPL)model.It is shown that crack spacing and non-homogeneous parameters have important effects on the thermoelastic responses,and the fluctuation phenomenon under the TPL model is the most pronounced due to the existence of the thermal displacement lag term.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
基金Project supported by the National Natural Science Foundation of China (Nos. 12372025 and 12072311)。
文摘This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the axial,width,and height directions,and a steady fluid flows inside the pipe.Two piezoelectric layers are attached to the upper and lower surfaces of the pipe,and are connected in series with a load resistance.The output electricity is predicted theoretically and validated by finite element(FE) simulation.The complex mechanisms regulating the energy harvesting performance are investigated,focusing particularly on the effects of 3D FG material(FGM) parameters,load resistance,fluid-structure interaction(FSI),and geometry.Numerical results indicate that among several material gradient parameters,the axial gradient index has the most significant impact.Increasing the axial and height gradient indices can markedly enhance the energy harvesting performance.The optimal resistances differ between the first two modes.Overall,the maximum power is generated at lower resistances.The FSI effect can also improve the energy harvesting performance;however,higher flow velocities may destabilize the system,causing failure of harvesting energy.This research is capable of providing new insights into the design of a pipe energy harvester in engineering applications.
基金supported by the National Natural Science Foundation of China(No.12172321)。
文摘The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated along both the radial and circumferential directions.By transforming the proposed integral constitutive equations into the equivalent differential forms,complemented by the corresponding constitutive boundary conditions(CBCs),a well-posed mathematical formulation is established for analyzing the axisymmetric bending and buckling of annular/circular functionally graded(FG)sandwich nanoplates.The boundary conditions at the inner edge of a solid nanoplate are derived by L'H?spital's rule.The numerical solution is obtained by the generalized differential quadrature method(GDQM).The accuracy of the proposed model is validated through comparison with the data from the existing literature.A parameter study is conducted to demonstrate the effects of FG sandwich parameters,size parameters,and nonlocal gradient parameters.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3207100)Hubei Provincial Strategic Scientist Training Plan(No.2022EJD009)the Fundamental Research Funds for the Central Universities of China(No.2042023kf1041)。
文摘In this study,the thermodynamic behaviors of the intrinsic frequency and buckling temperature of rectangular plates of functionally graded materials(FGMs)are explored based on the modified couple stress theory(MCST)and the novel dual powerlaw scale distribution theory.The effects of linear,homogeneous,and non-homogeneous temperature fields on the frequency and buckling temperature of FGM microplates are evaluated in detail.The results show that the porosity greatly affects the mechanical properties of FGM plates,reducing their frequency and flexural temperature compared with non-porous plates.Different temperature profiles alter plate frequencies and buckling temperatures.The presence and pattern of scale effect parameters are also shown to be crucial for the mechanical response of FGM plates.The present research aims to provide precise guidelines for the micro-electro-mechanical system(MEMS)fabrication by elucidating the complex interplay between thermal,material,and structural factors that affect the performance of FGM plates in advanced applications.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)the National Key Research and Development Program of China(2021YFA0716304)+3 种基金the project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-32)the National Natural Science Foundation of China(Nos.11902232,51972246,and 51521001).
文摘Given the significant potential of multi-directional functionally graded materials(MFGMs)for customizable performance,it is crucial to develop versatile material models to enhance design optimization in engineering applications.This paper introduces a material model for an MFGM plate described by trigonometric functions,equipped with four parameters to control diverse material distributions effectively.The bending and vibration analysis of MFGM rectangular and cutout plates is carried out utilizing isogeometric analysis,which is based on a novel third-order shear deformation theory(TSDT)to account for transverse shear deformation.The present TSDT,founded on rigorous kinematics of displacements,is demonstrated to surpass other preceding theories.It is derived from an elasticity formulation,rather than relying on the hypothesis of displacements.The effectiveness of the proposed method is verified by comparing its numerical results with those of other methods reported in the relevant literature.Numerical results indicate that the structure,boundary conditions,and gradient parameters of the MFGM plate significantly influence its deflection,stress,and vibration frequency.As the periodic parameter exceeds four,the model complexity increases,causing result fluctuations.Additionally,MFGM cutout plates,when clamped on all sides,display almost identical first four vibration frequencies.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.