期刊文献+
共找到36,803篇文章
< 1 2 250 >
每页显示 20 50 100
Illusion Optics via Phase-Gradient Metasurfaces
1
作者 haoyao Pan Jinpeng Yang Yadong Xu 《Chinese Physics Letters》 2026年第1期31-36,共6页
Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with pha... Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices. 展开更多
关键词 transformation optics anomalous diffraction law illusion opticsfeaturing flexible light manipulationwith illusion optics anomalous diffraction phase gradient modulation phase gradient metasurfaces
原文传递
Mechanisms driving anammox bacteria enrichment in constructed wetlands for self-purification of high-nitrogen polluted wastewater:Environmental gradients and microbial interactions
2
作者 Lin Liu Jie Li +2 位作者 Yu Xin Quan-Bao Zhao Yu-Ming Zheng 《Journal of Environmental Sciences》 2026年第1期44-53,共10页
Anammox bacteria in constructed wetlands(CWs)play pivotal role in sustainable nitrogen transformation,yet existing studies lack comprehensive analysis of environmental gradients and microbial interactions,both key fac... Anammox bacteria in constructed wetlands(CWs)play pivotal role in sustainable nitrogen transformation,yet existing studies lack comprehensive analysis of environmental gradients and microbial interactions,both key factors in anammox bacteria enrichment.This study investigated the mechanisms driving anammox bacteria enrichment in lab-scale simulated CWs treating high-nitrogen wastewater,focusing on bacterial community re-sponses across wetland layers with various strategies,including continuous up-flow influent,nitrogen loading increase,effluent recirculation,intermittent influent,and anammox bacteria inoculation.Results showed that total relative and absolute abundances of anammox bacteria ranged from 0.77%to 12.50%and from 0.13 to 6.46×10^(7) copies/g,respectively.Dissolved oxygen and pH had significant positive correlations with the absolute abundance of anammox bacteria,while organic matter and nitrate negatively impacted their relative abundance.Permutational multivariate analysis of variance indicated that spatial heterogeneity explained more variation in anammox bacteria abundance(43.44%)compared to operational strategies(8.58%).In terms of microbial interactions,60 dominant species exhibited potential correlations with anammox bacteria,comprising 170 interactions(105 positive and 65 negative),which suggested that anammox bacteria generally foster cooperative relationships with dominant bacteria.Notably,significant interspecies interactions were observed between Candidatus Kuenenia(dominant anammox bacteria in CWs)and species within the genera Chitinivibrio-nia and Anaerolineaceae,suggesting that microbial interactions primarily manifest as indirect facilitative effects rather than direct mutualistic relationships.Given that the Normalized Stochasticity Ratio in CWs were<50%,this study inferred that environmental gradients have greater influence on anammox bacteria than microbial interactions. 展开更多
关键词 Self-purifying capacity Anammox bacteria Environmental gradient Constructed wetland Co-occurrence network Nature-based solution
原文传递
Scalable and Healable Gradient Textiles for Multi‑Scenario Radiative Cooling via Bicomponent Blow Spinning
3
作者 Baiyu Ji Yufeng Wang +6 位作者 Ying Liu Yongxu Zhao Fankun Xu Jian Huang Yue‑EMiao Chao Zhang Tianxi Liu 《Nano-Micro Letters》 2026年第3期338-353,共16页
Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emissi... Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals.However,the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects,thereby posing a significant challenge to their versatile cooling applicability.Herein,we present a bicomponent blow spinning strategy for the production of scalable,ultra-flexible,and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter.The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area,thereby achieving a competitive solar reflectivity of 98.7%on its outer surface.Additionally,the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces:The outer surface demonstrates a high mid-infrared emission,whereas the inner surface shows a broad infrared absorptivity,facilitating radiative heat exchange with underlying self-heated objects.Consequently,this textile demonstrates multi-scenario radiative cooling capabilities,enabling versatile outdoor cooling for unheated objects by 7.8℃ and self-heated objects by 13.6℃,compared to commercial sunshade fabrics. 展开更多
关键词 gradient cooling textile Bicomponent blow spinning Janus spectral selectivity Radiative heat exchange Multi-scenario radiative cooling
在线阅读 下载PDF
Stress gradient versus strain gradient in polycrystalline high entropy alloy revealed by crystal plasticity finite element simulation
4
作者 Libo Yu Weipeng Li +2 位作者 Weizheng Lu Hui Feng Qihong Fang 《Acta Mechanica Sinica》 2025年第10期1-15,共15页
Gradient structures(GS)play a crucial role in achieving a balance between strength and plasticity in metals and alloys.However,there is still a lack of understanding of the mechanisms that maintain a plasticity gradie... Gradient structures(GS)play a crucial role in achieving a balance between strength and plasticity in metals and alloys.However,there is still a lack of understanding of the mechanisms that maintain a plasticity gradient to prevent the premature failure of fine grains in GS materials.In this work,by incorporating experimental data and the Hall-Petch relationship,we develop a size-dependent crystal plasticity model to investigate the deformation mechanisms for enhancing the strength and plasticity in polycrystalline high entropy alloys.The simulations of the GS model align well with the experimental results,exhibiting strong strain and stress gradients to improve the mechanical properties.Under the conditions of significant de-formation incompatibility,the strain gradient predominantly drives the enhancement of plasticity mechanisms.As the de-formation incompatibility decreases,the stress gradient begins to play a significant role in comparison with the strain gradient.This shift is attributed to the regular variations in dislocation density within different domains.As the grain size gradients and loads decrease,the dislocation density becomes more uniform across the domains,hindering the formation of strong domain boundaries.While this may impede the activation of strain gradients,it facilitates the activation of stress gradients as a supplementary measure.By designing multilayered GS structures to alter the distribution of dislocation density,we can control the activation levels of stress and strain gradients,thereby influencing the plasticity mechanisms and mechanical properties of the material. 展开更多
关键词 gradient structure Plasticity gradient Dislocation density Strain gradient Stress gradient Crystal plasticity finite element
原文传递
Discrete Ultra-Broadband Perfect Anomalous Reflection in Depth Gradient Metasurfaces
5
作者 Siyu Gu Cong Wang +5 位作者 Ziying Gao Lei Gao Drolgar Feng Gao Shaojun Wang Yadong Xu 《Chinese Physics Letters》 2025年第9期28-33,共6页
Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodi... Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites. 展开更多
关键词 phase gradient metasurfaces pgms discrete ultra broadband perfect anomalous reflection depth gradient metasurfaces optical phase gradient metasurfaces geometric periodicity adjusting operating frequency perfect anomalous reflections microwave range
原文传递
Diversificationrates in large-scale moss assemblages along latitudinal and climatic gradients across the world
6
作者 Hong Qian 《Plant Diversity》 2025年第5期833-838,共6页
Species richness in any area results from the interplay of the processes of speciation,extinction,and dispersal.The relationships between species richness and climate should be considered as an outcome of the effects ... Species richness in any area results from the interplay of the processes of speciation,extinction,and dispersal.The relationships between species richness and climate should be considered as an outcome of the effects of climate on speciation,extinction,and dispersal.Diversificationrate represents the balance of speciation and extinction rates over time.Here,I explore diversificationrates in mosses across geographic and climatic gradients worldwide.Specifically,I investigate latitudinal patterns and climatic associations of the mean diversificationrate of mosses at global,hemispheric,and smaller scales.I findthat the mean diversificationrate of mosses is positively correlated with species richness of mosses,increases with decreasing latitude and increasing mean annual temperature and annual precipitation,and is more strongly associated with mean annual temperature than with annual precipitation.These findingsshed light on variation of species richness in mosses across the world.The negative relationship between species richness and latitude and the positive relationship between species richness and mean diversificationrate in mosses suggest that higher moss species richness at lower latitudes might have resulted,at least to some degree,from higher moss diversificationrates at lower latitudes. 展开更多
关键词 BRYOPHYTE Climatic gradient Latitudinal diversity gradient SPECIATION Species richness Tip diversification
在线阅读 下载PDF
Role of endoscopic ultrasound-guided portal pressure gradient measurement in assessing liver function before liver-directed therapies
7
作者 Ahmed Telbany Youssef Soliman +2 位作者 Gagandeep Singh Khaled Abouelezz Toufic Kachaamy 《World Journal of Gastrointestinal Surgery》 2025年第9期1-7,共7页
Liver-directed therapies such as resection,ablation,and embolization offer potentially curative options for patients with primary and metastatic liver tumors as part of multidisciplinary oncology care.However,these tr... Liver-directed therapies such as resection,ablation,and embolization offer potentially curative options for patients with primary and metastatic liver tumors as part of multidisciplinary oncology care.However,these treatments pose significant hepatic decompensation risks,particularly with underlying liver disease and chemotherapy-associated steatohepatitis.Accurate assessment of liver function and portal hypertension(PH)is critical for candidate selection.While Child-Pugh score and model for end-stage liver disease are commonly used,they have substantial limitations.Hepatic venous pressure gradient(HVPG)measurement remains the gold standard for assessing PH but is invasive and not widely available.Endoscopic ultrasound(EUS)guided portal pressure gradient(PPG)measurement has emerged as a promising minimally invasive alternative.EUSPPG demonstrates excellent technical success rates,safety profile,and correlation with HVPG in early studies.By providing direct portal pressure measurement,EUS-PPG offers several advantages over existing methods for prognostication and risk stratification prior to liver-directed therapies,particularly in detecting presinusoidal hypertension.Furthermore,it has potential applications in assessing response to neoadjuvant treatments and guiding adjuvant therapies.However,research is needed to validate its predictive performance and cost-effectiveness in larger prospective cohorts and to establish its accuracy compared to non-invasive assessment of liver function. 展开更多
关键词 Liver function Portal hypertension Hepatic venous pressure gradient Endoscopic ultrasound Portal pressure gradient Liver resection Endo-hepatology
暂未订购
Effect of post-dynamic recrystallization on microstructure evolution of GH141 superalloy after gradient thermal deformation
8
作者 Wenpeng Li Panzhi Wang +6 位作者 Qing Wang Jiadian Yang Jingjing Ruan Xin Zhou Lilong Zhu Liang Jiang Hua Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2211-2223,共13页
The GH141 superalloy ring-rolled parts often face microstructural inhomogeneity during production.This work investigated the effect of post-dynamic recrystallization on the microstructural evolution of GH141 superallo... The GH141 superalloy ring-rolled parts often face microstructural inhomogeneity during production.This work investigated the effect of post-dynamic recrystallization on the microstructural evolution of GH141 superalloy after gradient thermal deformation to solve the problem of microstructural inhomogeneity.Compression tests involving double cone(DC)samples were conducted at various temperatures to assess the effect of gradient strain on internal grain microstructure variation,which ranged from the rim to the center of the samples.The results demonstrate considerable microstructural inhomogeneity induced by gradient strain in the DC samples.The delay in heat preservation facilitated post-dynamic recrystallization(PDRX)and promoted extensive recrystallization in the DC samples experiencing large gradient strain,which resulted in a homogeneous grain microstructure throughout the samples.During compression at a relatively low temperature,dynamic recrystallization(DRX)was predominantly driven by continuous dynamic recrystallization(CDRX).As the deformation temperature increased,the DRX mechanism changed from CDRX-dominated to being dominated by discontinuous dynamic recrystallization(DDRX).During the delay of the heat preservation process,PDRX was dominated by a static recrystallization mechanism,along with the occurrence of meta-dynamic recrystallization(MDRX)mechanisms.In addition,the PDRX mechanism of twin-induced recrystallization nucleation was observed. 展开更多
关键词 GH141 superalloy gradient thermal deformation delay heat preservation gradient microstructure post-dynamic recrystallization recrystallization mechanism twining
在线阅读 下载PDF
Graphene oxide-based nanofluidic membranes for reverse electrodialysis that generate electricity from salinity gradients
9
作者 Changchun Yu Yiming Xiang +4 位作者 Tom Lawson Yandi Zhou Pingan Song Shulei Chou Yong Liu 《Carbon Energy》 2025年第1期36-51,共16页
A widely employed energy technology,known as reverse electrodialysis(RED),holds the promise of delivering clean and renewable electricity from water.This technology involves the interaction of two or more bodies of wa... A widely employed energy technology,known as reverse electrodialysis(RED),holds the promise of delivering clean and renewable electricity from water.This technology involves the interaction of two or more bodies of water with varying concentrations of salt ions.The movement of these ions across a membrane generates electricity.However,the efficiency of these systems faces a challenge due to membrane performance degradation over time,often caused by channel blockages.One potential solution to enhance system efficiency is the use of nanofluidic membranes.These specialized membranes offer high ion exchange capacity,abundant ion sources,and customizable channels with varying sizes and properties.Graphene oxide(GO)-based membranes have emerged as particularly promising candidates in this regard,garnering significant attention in recent literature.This work provides a comprehensive overview of the literature surrounding GO membranes and their applications in RED systems.It also highlights recent advancements in the utilization of GO membranes within these systems.Finally,it explores the potential of these membranes to play a pivotal role in electricity generation within RED systems. 展开更多
关键词 graphene oxide ion gradients nanofluidic membranes reverse electrodialysis salinity gradient power
在线阅读 下载PDF
A light-powered molecular pump achieving transmembrane concentration gradient
10
作者 Man Wu Chuandong Jia 《Chinese Journal of Structural Chemistry》 2025年第4期12-13,共2页
According to the second law of thermodynamics,spontaneous chemical processes will ultimately reach the equilibrium state with the lowest energy.However,in biological systems,there are numerous highenergy states far fr... According to the second law of thermodynamics,spontaneous chemical processes will ultimately reach the equilibrium state with the lowest energy.However,in biological systems,there are numerous highenergy states far from equilibrium.One typical example is the transmembrane ion-concentration gradient,which plays crucial roles in maintaining homeostasis,regulating cell volume,and enabling cell signaling.Transmembrane ion-concentration gradient is achieved by an active transport process that requires the input of energy and the action of pump proteins.Replicating this process with synthetic supramolecular systems is particularly challenging,requiring both the input of energy and very specific,spatiotemporal control over ion uptake and release.In nature,pump proteins,such as protein-based ion channels,have evolved highly intricate architectures to perform this function.In contrast,Aprahamian and coworkers recently developed a much simpler smallmolecule system that functions as a molecular ion pump,utilizing light energy to pump chloride ions across a hydrophobic barrier against the concentration gradient[1]. 展开更多
关键词 active transport process light powered molecular pump high energy states transmembrane concentration gradient ion concentration gradient maintaining homeostasisregulating equilibrium state chemical processes
原文传递
Numerical design of transverse gradient coil with transformed magnetic gradient field over an effective imaging area
11
作者 Chaoqun Niu Hongyi Qu 《Magnetic Resonance Letters》 2025年第1期40-51,共12页
Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration... Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration of the safety and comfort of the patient,the mechanical stability,acoustic noise and peripheral nerve stimulation(PNS)are also need to be concerned for practical use.In our previous work,a high-efficiency whole-body gradient coil set with a hybrid cylindrical-planar structure has been presented,which offers significantly improved coil performances.In this work,we propose to design this transverse gradient coil system with transformed magnetic gradient fields.By shifting up the zero point of gradient fields,the designed new Y-gradient coil could provide enhanced electromagnetic performances.With more uniform coil winding arrangement,the net torque of the new coil is significantly reduced and the generated sound pressure level(SPL)is lower at most tested frequency bands.On the other hand,the new transverse gradient coil designed with rotated magnetic gradient fields produces considerably reduced electric field in the human body,which is important for the use of rapid MR sequences.It's demonstrated that a safer and patient-friendly design could be obtained by using transformed magnetic gradient fields,which is critical for practical use. 展开更多
关键词 Magnetic resonance imaging(MRI) gradient coil Transformed magnetic gradient field Acoustic noise Induced electric field
暂未订购
Grain boundary-mediated strain response mechanism of AZ31 gradient-structure Mg alloy plate under uniaxial tensile loading
12
作者 Wen Tao Niu Feng Li +2 位作者 Yuan Qi Li Zi Yi Wang Lu Sun 《Journal of Magnesium and Alloys》 2025年第5期2283-2294,共12页
The changes in strain gradient induced by grain boundaries are crucial for enhancing the plasticity of gradient magnesium(Mg)alloys.The change of strain distribution influence by grain boundaries during plastic deform... The changes in strain gradient induced by grain boundaries are crucial for enhancing the plasticity of gradient magnesium(Mg)alloys.The change of strain distribution influence by grain boundaries during plastic deformation of the gradient structure was examined.In this paper,the gradient structure AZ31 Mg-alloy plate with the surface fine grain(FG)to the center coarse grain(CG)was fabricated using hard plate rolling(HPR).The microstructure and strain distribution of Mg-alloy with a gradient structure were analyzed by electron backscatter diffraction(EBSD)and Digital image correlation(DIC)during uniaxial tensile.The findings indicate that the gradient structure sample(GS sample)displays a uniform strain distribution during the tensile process.Coarse-grain sample(CG sample)have obvious strain concentration,which leads to premature fracture.Based on EBSD characterization,low-angle grain boundaries(LAGBs)accumulates in the CG during plastic deformation.Orientation of CG tends to the(0001)basal.At the same time,the density of geometrically necessary dislocations(GNDs)inside CG has changed,which improves the Heterogeneous deformation induced(HDI)stress of gradient structure.During the uniaxial tensile,LAGBs accumulates in CG and changes the strain distribution of the gradient structure,which induces the accumulation of GNDs,and hence improving the properties of the GS Mg-alloy.These findings unveil the mechanism of strength-plasticity synergism of GS alloys from a new perspective and offer insights into the application of GS in Mg-alloys. 展开更多
关键词 Hard plate rolling AZ31 gradient magnesium alloys Strain gradient Geometrically necessary dislocations
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems 被引量:1
13
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Absorption-Reflection-Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption 被引量:3
14
作者 Yang Zhou Wen Zhang +7 位作者 Dong Pan Zhaoyang Li Bing Zhou Ming Huang Liwei Mi Chuntai Liu Yuezhan Feng Changyu Shen 《Nano-Micro Letters》 2025年第6期466-481,共16页
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom... The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials. 展开更多
关键词 Magnetic MXene Layered and gradient structure Power coefficient Electromagnetic wave absorption
在线阅读 下载PDF
Characteristics of pressure gradient force errors in a terrain-following coordinate 被引量:1
15
作者 LI Jin-Xi LI Yi-Yuan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第3期211-218,共8页
A terrain-following coordinate (a-coordinate) in which the computational form of pressure gradient force (PGF) is two-term (the so-called classic method) has significant PGF errors near steep terrain. Using the ... A terrain-following coordinate (a-coordinate) in which the computational form of pressure gradient force (PGF) is two-term (the so-called classic method) has significant PGF errors near steep terrain. Using the covariant equations of the a-coordinate to create a one-term PGF (the covariant method) can reduce the PGF errors. This study investigates the factors inducing the PGF errors of these two methods, through geometric analysis and idealized experiments. The geometric analysis first demonstrates that the terrain slope and the vertical pressure gradient can induce the PGF errors of the classic method, and then generalize the effect of the terrain slope to the effect of the slope of each vertical layer (φ). More importantly, a new factor, the direction of PGF (a), is proposed by the geometric analysis, and the effects of φ and a are quantified by tan φ.tan a. When tan φ.tan a is greater than 1/9 or smaller than -10/9, the two terms of PGF of the classic method are of the same order but opposite in sign, and then the PGF errors of the classic method are large. Finally, the effects of three factors on inducing the PGF errors of the classic method are validated by a series of idealized experiments using various terrain types and pressure fields. The experimental results also demonstrate that the PGF errors of the covariant method are affected little by the three factors. 展开更多
关键词 Terrain-following coordinatepressure gradient forceerrors direction of pressuregradient slope of eachvertical layer nonlinearvertical pressure gradient pressure gradient alongvertical layer
在线阅读 下载PDF
Elements gradient doping in Mn-based Li-rich layered oxides for long-life lithium-ion batteries 被引量:2
16
作者 Yinzhong Wang Shiqi Liu +7 位作者 Xianwei Guo Boya Wang Qinghua Zhang Yuqiang Li Yulong Wang Guoqing Wang Lin Gu Haijun Yu 《Journal of Materials Science & Technology》 2025年第4期266-273,共8页
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ... The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime. 展开更多
关键词 Mn-based Li-rich layered oxide cathode Li_(2)MnO_(3)crystal domain Elemental gradient Lithium-ion batteries Energy storage
原文传递
Trends in alpha diversity,community composition,and network complexity of rare,intermediate,and abundant bacterial taxa along a latitudinal gradient and their impact on ecosystem multifunctionality 被引量:1
17
作者 Rong Tang Shuaifeng Li +3 位作者 Xiaobo Huang Rui Zhang Cong Li Jianrong Su 《Forest Ecosystems》 2025年第4期642-654,共13页
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ... Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient. 展开更多
关键词 BACTERIA Ecosystem multifunctionality Alpha diversity Community composition Network complexity Latitudinal gradient
在线阅读 下载PDF
CNN-ALSTM Soft-Sensing Model for Resistivity Gradient in CZ Monocrystalline Silicon Wafers 被引量:1
18
作者 Zhiheng Zhang Zengguo Tian 《Instrumentation》 2025年第2期71-79,共9页
This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Me... This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Memory soft-sensing model based on Convolutional Neural Network(CNN)and attention mechanism(CNN-ALSTM)that enhances traditional LSTM by integrating CNN and attention mechanism to overcome time lag variations during silicon pulling.The CNN module extracts spatial features from multi-source sensor data,while the attention-enhanced LSTM(ALSTM)dynamically adjusts historical parameter weights,enabling accurate resistivity gradient prediction.Experiments with real production data show that CNN-ALSTM outperforms SVR,FNN,RNN,XGBoost,and GRU,improving prediction accuracy by 11.76%,16.67%,21.05%,30.23%,and 9.09%,respectively.This soft-sensing approach enhances real-time monitoring and optimization of monocrystalline silicon growth. 展开更多
关键词 CZ monocrystalline silicon soft-sensing model CNN-ALSTM resistivity gradient
原文传递
The global lithospheric field modeling based on MSS-1 and other satellites' gradient data 被引量:1
19
作者 YuXuan Lin Yan Feng +2 位作者 JiaXuan Zhang XinWu Li Ya Huang 《Earth and Planetary Physics》 2025年第3期677-685,共9页
We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensiv... We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve. 展开更多
关键词 lithospheric magnetic field Macao Science Satellite-1 gradient data LCS-1
在线阅读 下载PDF
Enhanced rolling contact fatigue property of a rare earth addition bearing steel with a gradient nanostructured surface layer 被引量:1
20
作者 G.S.Dong B.Gao +1 位作者 C.Y.Yang Z.B.Wang 《Journal of Materials Science & Technology》 2025年第8期267-277,共11页
Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was appli... Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue. 展开更多
关键词 Rare earth addition bearing steel Surface mechanical rolling treatment Rolling contact fatigue gradient nanostructured MICROCRACK
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部