期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems
1
作者 Yi Guan Pengpeng Zhi Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期3343-3368,共26页
Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challen... Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity(LF)and/or HF samples.The additional samples must enhance the model accuracy while maximizing the computational efficiency.We propose ISMA-VFEEI,a global optimization framework that integrates an Improved Slime-Mould Algorithm(ISMA)and a Variable-Fidelity Expected Extension Improvement(VFEEI)learning function to construct a VF surrogate model efficiently.First,A cost-aware VFEEI function guides the adaptive LF/HF sampling by explicitly incorporating evaluation cost and existing sample proximity.Second,ISMA is employed to solve the resulting non-convex optimization problem and identify global optimal infill points for model enhancement.The efficacy of ISMA-VFEEI is demonstrated through six numerical benchmarks and one real-world engineering case study.The engineering case study of a high-speed railway Electric Multiple Unit(EMU),the optimization objective of a sanding device attained a minimum value of 1.546 using only 20 HF evaluations,outperforming all the compared methods. 展开更多
关键词 global optimization KRIGING variable-fidelity model slime mould algorithm expected improvement
在线阅读 下载PDF
CHAOTIC ANNEALING NEURAL NETWORK FOR GLOBAL OPTIMIZATION OF CONSTRAINED NONLINEAR PROGRAMMING 被引量:1
2
作者 张国平 王正欧 袁国林 《Transactions of Tianjin University》 EI CAS 2001年第3期141-146,共6页
Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield netwo... Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield network,this paper proposes a new chaotic annealing neural network (CANN) for global optimization of continuous constrained non linear programming.It is easy to implement,conceptually simple,and generally applicable.Numerical experiments on severe test functions manifest that CANN is efficient and reliable to search for global optimum and outperforms the existing genetic algorithm GAMAS for the same purpose. 展开更多
关键词 global optimization neural network chaotic noise annealing
在线阅读 下载PDF
Application of Evolution Sequential Number Theoretic Optimization in Global Optimization
3
作者 刘洪谦 袁希钢 方开泰 《Transactions of Tianjin University》 EI CAS 2002年第4期221-225,共5页
Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution i... Synthesis of chemical processes is of non-convex and multi-modal. Deterministic strategies often fail to find global optimum within reasonable time scales. Stochastic methodologies generally approach global solution in probability. In recogniting the state of art status in the discipline, a new approach for global optimization of processes, based on sequential number theoretic optimization (SNTO), is proposed. In this approach, subspaces and feasible points are derived from uniformly scattered points, and iterations over passing the corner of local optimum are enhanced via parallel strategy. The efficiency of the approach proposed is verified by results obtained from various case studies. 展开更多
关键词 global optimization sequential number theoretic optimization parallel optimization
在线阅读 下载PDF
A New Hybrid Method for Constrained Global Optimization
4
作者 杨若黎 吴沧浦 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期16+7-16,共11页
By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of ... By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of the simulated annealing algorithm used in the hybrid method as general as possible, the nonlinear programming neural network is employed at each iteration to find only a feasible solution to the original constrained problem rather than a local optimal solution. Such a feasible solution is obtained by solving an auxiliary optimization problem with a new objective function. The computational results for two numerical examples indicate that the proposed hybrid method for constrained global optimization is not only highly reliable but also much more effcient than the simulated annealing algorithm using the penalty function method to deal with the constraints. 展开更多
关键词 OPTIMIZATION neural networks/global optimization simulated annealing
在线阅读 下载PDF
Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC 被引量:97
5
作者 Aijun Zhu Chuanpei Xu +2 位作者 Zhi Li Jun Wu Zhenbing Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期317-328,共12页
A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi... A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration. 展开更多
关键词 META-HEURISTIC global optimization NP hard problem
在线阅读 下载PDF
A New Chaotic Parameters Disturbance Annealing Neural Network for Solving Global Optimization Problems 被引量:15
6
作者 MAWei WANGZheng-Ou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期385-392,共8页
Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to ... Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization. 展开更多
关键词 Hopfield neural network global optimization chaotic parameters disturbance simulated annealing
在线阅读 下载PDF
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:14
7
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
在线阅读 下载PDF
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
8
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
9
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
10
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
A Global Best-guided Firefly Algorithm for Engineering Problems 被引量:6
11
作者 Mohsen Zare Mojtaba Ghasemi +4 位作者 Amir Zahedi Keyvan Golalipour Soleiman Kadkhoda Mohammadi Seyedali Mirjalili Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2359-2388,共30页
The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evoluti... The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evolution(DE)/current-to-best/1 for enhancing the FA's movement process.The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution.However,employing the best solution can lead to premature algorithm convergence,but this study handles this issue using a loop adjacent to the algorithm's main loop.Additionally,the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA.The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values.Additionally,the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms.In all cases,GbFA provides the optimal result compared to other methods.Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa. 展开更多
关键词 Firefly algorithm New movement vector global best-guided firefly algorithm global optimization Engineering design
在线阅读 下载PDF
A New Subdivision Algorithm for the Bernstein Polynomial Approach to Global Optimization 被引量:6
12
作者 P.S.V.Nataraj M.Arounassalame 《International Journal of Automation and computing》 EI 2007年第4期342-352,共11页
In this paper, an improved algorithm is proposed for unconstrained global optimization to tackle non-convex nonlinear multivariate polynomial programming problems. The proposed algorithm is based on the Bernstein poly... In this paper, an improved algorithm is proposed for unconstrained global optimization to tackle non-convex nonlinear multivariate polynomial programming problems. The proposed algorithm is based on the Bernstein polynomial approach. Novel features of the proposed algorithm are that it uses a new rule for the selection of the subdivision point, modified rules for the selection of the subdivision direction, and a new acceleration device to avoid some unnecessary subdivisions. The performance of the proposed algorithm is numerically tested on a collection of 16 test problems. The results of the tests show the proposed algorithm to be superior to the existing Bernstein algorithm in terms of the chosen performance metrics. 展开更多
关键词 Bernstein polynomials global optimization nonlinear optimization polynomial optimization unconstrained optimization.
在线阅读 下载PDF
A Parameter-Free Filled Function for Unconstrained Global Optimization 被引量:9
13
作者 安澜 张连生 +2 位作者 陈美霖 Chen mei-lin 《Journal of Shanghai University(English Edition)》 CAS 2004年第2期117-123,共7页
The filled function method is an approach for finding a global minimum of multi-dimensional functions. With more and more relevant research, it becomes a promising way used in unconstrained global optimization. Some f... The filled function method is an approach for finding a global minimum of multi-dimensional functions. With more and more relevant research, it becomes a promising way used in unconstrained global optimization. Some filled functions with one or two parameters have already been suggested. However, there is no certain criterion to choose a parameter appropriately. In this paper, a parameter-free filled function was proposed. The definition of the original filled function and assumptions of the objective function given by Ge were improved according to the presented parameter-free filled function. The algorithm and numerical results of test functions were reported. Conclusions were drawn in the end. Key words global optimization - filled function method - local minimizer MSC 2000 90C30 展开更多
关键词 global optimization filled function method local minimizer
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
14
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:4
15
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
GLOBAL OPTIMIZATION OF PUMP CONFIGURATION PROBLEM USING EXTENDED CROWDING GENETIC ALGORITHM 被引量:3
16
作者 ZhangGuijun WuTihua YeRong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期247-252,共6页
An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective f... An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information. 展开更多
关键词 Pump configuration problem Extended crowding genetic algorithm Speciesconserving Composite encoding global optimization
在线阅读 下载PDF
Dynamic Individual Selection and Crossover Boosted Forensic-based Investigation Algorithm for Global Optimization and Feature Selection 被引量:3
17
作者 Hanyu Hu Weifeng Shan +5 位作者 Jun Chen Lili Xing Ali Asghar Heidari Huiling Chen Xinxin He Maofa Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2416-2442,共27页
The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,g... The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,generalizability,and interpretability of models.Meta-heuristic algorithms are often utilized for FS tasks due to their low requirements and efficient performance.This paper introduces an augmented Forensic-Based Investigation algorithm(DCFBI)that incorporates a Dynamic Individual Selection(DIS)and crisscross(CC)mechanism to improve the pursuit phase of the FBI.Moreover,a binary version of DCFBI(BDCFBI)is applied to FS.Experiments conducted on IEEE CEC 2017 with other metaheuristics demonstrate that DCFBI surpasses them in search capability.The influence of different mechanisms on the original FBI is analyzed on benchmark functions,while its scalability is verified by comparing it with the original FBI on benchmarks with varied dimensions.BDCFBI is then applied to 18 real datasets from the UCI machine learning database and the Wieslaw dataset to select near-optimal features,which are then compared with six renowned binary metaheuristics.The results show that BDCFBI can be more competitive than similar methods and acquire a subset of features with superior classification accuracy. 展开更多
关键词 Feature selection Forensic-based investigation algorithm Crisscross mechanism global optimization Metaheuristic algorithms Bionic algorithm
在线阅读 下载PDF
Chaos-enhanced moth-flame optimization algorithm for global optimization 被引量:3
18
作者 LI Hongwei LIU Jianyong +3 位作者 CHEN Liang BAI Jingbo SUN Yangyang LU Kai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1144-1159,共16页
Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to f... Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to fall into local optimum and leads to slow convergence speed.The chaotic map is one of the best methods to improve exploration and exploitation of the metaheuristic algorithms.In the present study,we propose a chaos-enhanced MFO(CMFO)by incorporating chaos maps into the MFO algorithm to enhance its performance.The chaotic map is utilized to initialize the moths’population,handle the boundary overstepping,and tune the distance parameter.The CMFO is benchmarked on three groups of benchmark functions to find out the most efficient one.The performance of the CMFO is also verified by using two real engineering problems.The statistical results clearly demonstrate that the appropriate chaotic map(singer map)embedded in the appropriate component of MFO can significantly improve the performance of MFO. 展开更多
关键词 moth-flame optimization(MFO) chaotic map METAHEURISTIC global optimization
在线阅读 下载PDF
Multi-strategies Boosted Mutative Crow Search Algorithm for Global Tasks:Cases of Continuous and Discrete Optimization 被引量:2
19
作者 Weifeng Shan Hanyu Hu +4 位作者 Zhennao Cai Huiling Chen Haijun Liu Maofa Wang Yuntian Teng 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1830-1849,共20页
Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The orig... Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The original version of the CSA has simple parameters and moderate performance.However,it often tends to converge slowly or get stuck in a locally optimal region due to a missed harmonizing strategy during the exploitation and exploration phases.Therefore,strategies of mutation and crisscross are combined into CSA(CCMSCSA)in this paper to improve the performance and provide an efficient optimizer for various optimization problems.To verify the superiority of CCMSCSA,a set of comparisons has been performed reasonably with some well-established metaheuristics and advanced metaheuristics on 15 benchmark functions.The experimental results expose and verify that the proposed CCMSCSA has meaningfully improved the convergence speed and the ability to jump out of the local optimum.In addition,the scalability of CCMSCSA is analyzed,and the algorithm is applied to several engineering problems in a constrained space and feature selection problems.Experimental results show that the scalability of CCMSCSA has been significantly improved and can find better solutions than its competitors when dealing with combinatorial optimization problems.The proposed CCMSCSA performs well in almost all experimental results.Therefore,we hope the researchers can see it as an effective method for solving constrained and unconstrained optimization problems. 展开更多
关键词 Crow search algorithm Feature selection global optimization Metaheuristic algorithms Engineering problems Bionic algorithm
在线阅读 下载PDF
Whole-process design and experimental validation of landing gear lower drag stay with global/local linked driven optimization strategy 被引量:8
20
作者 Chengwei FEI Haotian LIU +3 位作者 Zhengzheng ZHU Liqiang AN Shaolin LI Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期318-328,共11页
Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and r... Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and reduce the weight of landing gear, Global/local Linked Driven Optimization Strategy(GLDOS) was developed to conduct the overall process design of lower drag stay in respect of optimization thought. The whole-process optimization involves two stages of structural conceptual design and detailed design. In the structural conceptual design, the landing gear lower drag stay was globally topologically optimized by adopting multiple starting points algorithm. In the detailed design, the local size and shape of landing gear lower drag stay were globally optimized by the gradient optimization strategy. The GLDOS method adopts different optimization strategies for different optimization stages to acquire the optimum design effect. Through the experimental validation, the weight of the optimized lower dray stay with the developed GLDOS is reduced by 16.79% while keeping enough strength and stiffness, which satisfies the requirements of engineering design under the typical loading conditions. The proposed GLDOS is validated to be accurate and efficient in optimization scheme and design cycles. The efforts of this paper provide a whole-process optimization approach regarding different optimization technologies in different design phases, which is significant in reducing structural weight and enhance design tp wid 1 precision for complex structures in aircrafts. 展开更多
关键词 global/local linked driven optimization Landing gear Lower drag stay OPTIMIZATION Whole-process design
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部