Seed germination plays a pivotal role in plant growth and undergoes many intricate biochemical changes including lipid metabolism.Nevertheless,little is known about lipid changes and distributions in different structu...Seed germination plays a pivotal role in plant growth and undergoes many intricate biochemical changes including lipid metabolism.Nevertheless,little is known about lipid changes and distributions in different structures of soybean seeds during germination.Here,we applied mass spectrometry imaging(MSI)in conjunction with MS-based lipidomics to examine the lipid alterations in the embryo and cotyledon of soybean seeds during germination.To expand the coverage of lipid detection in soybean seeds,we used the novel techniques of matrix-assisted laser desorption/ionization(MALDI)and MALDI coupled with laser-postionization(MALDI-2).The results revealed that compared to MALDI,MALDI-2 enhanced the detected numbers and intensities of lipid species in various lipid classes,except for a few classes(e.g.,sphingomyelin and phosphatidylcholine).Lipidomic data showed that compared to the embryo,the cotyledon demonstrated slower but similar lipid changes during germination.These changes included the reduced levels of glycerolipids,phospholipids,and sterols,as well as the increased levels of lysophospholipids.Data from MALDI&MALDI-2 MSI supported and complemented these lipidomic findings.Our work highlights the significance of integrating lipid profiles and distributions to enhance our understanding of the metabolic pathways involved in seed germination.展开更多
[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to constru...[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.展开更多
The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of c...The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.展开更多
To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfa...To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS) (1.0 g/L) and Triton-X-100 (1.0 mL/L)], whole rice grains soaked in distilled water for 12 h at 30℃were germinated in the dark at 30℃ for five days. The highest germination rate (77.1%) was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter) was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5^th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM) and proteolytic (0 to 0.12 U/g DM) activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L) and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water), whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.展开更多
Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried...Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried out with three mediums. Experimental results showed that the species had lower percentage of germination on all mediums. The limiting factors for germination were analyzed.展开更多
Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, oli...Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.展开更多
The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abu...The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods,which may lead to high mortality due to rodent predation or fungal infestations.By tracking 2 species of rapidly germinating seeds(Pittosporopsis kerrii,family Icacinaceae;Camellia kissi,family Theaceae),which depend on dispersal by scatter-hoarding rodents,we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture,Southwest China.We found that high seed abundance at the community level was associated with delayed and reduced seed removal,decreased dispersal distance and increased pre-dispersal seed survival for both plant species.High seed abundance was also associated with reduced seed caching of C.kissi,but it showed little effect on seed caching of P.kerrii.However,post-dispersal seed survival for the 2 plant species followed the reverse pattern.High seed abundance in the community was associated with higher post-dispersal survival of P.kerrii seeds,but with lower post-dispersal survival of C.kissi seeds.Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.展开更多
Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemi...Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins. The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction sys- tem were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration. This paper provides important clues which are helpful to understanding the changes in gene expres- sion, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.展开更多
Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase ...Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.展开更多
Gly m Bd 28K, Gly m Bd 30K and Gly m Bd 60K are the major soybean (Glycine max (L.) Merr.) allergens limiting the consumption of a good protein source for sensitive individuals. However, little is known about thei...Gly m Bd 28K, Gly m Bd 30K and Gly m Bd 60K are the major soybean (Glycine max (L.) Merr.) allergens limiting the consumption of a good protein source for sensitive individuals. However, little is known about their temporal-spatial expression during seed development and upon germination. The present data shows that soy allergens accumulated in both the embryonic axes and cotyledon, but expression patterns differed depending on the specific allergen. Allergens accumulated sooner and to a greater level in cotyledons than in embryonic axes. Gly m Bd 28 began at 14 d after flowering, 7 to 14 d earlier than Gly m Bd 30K and Gly m Bd 60K. Comparatively, their degradation was faster and more profound in embryonic axes than in cotyledons. Gly m Bd 60K began to decline at 36 h after imbibition and remained detectable up to 108 h in cotyledons. In contrast, the Glym Bd 60K protein was reduced at 24 h, and eventually disappeared at 96 h. In cotyledons Gly m Bd 28K first declined at 24 h, then increased from 36 h to 48 h, followed by its large reduction at 72 h after seed germination. These findings provide useful information on soy allergen biosynthesis and will help move forward towards developing a hypoallergenic soybean for safer food.展开更多
Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge ...Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge about the mechanism of seed germination, two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition. Thirty- nine differentially expressed proteins were identified, including 19 down-regulated and 20 up-regulated proteins. Storage proteins and some seed development- and desiccation-associated proteins were down regulated. The changed patterns of these proteins indicated extensive mobilization of seed reserves. By contrast, catabolism-associated proteins were up regulated upon imbibition. Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or up- regulated proteins were also down or up regulated at mRNA level. The expression of these genes was largely consistent at mRNA and protein levels. In providing additional information concerning gene regulation in early plant life, this study will facilitate understanding of the molecular mechanisms of seed germination.展开更多
Germinated quinoa flour has been proven to be rich in a variety of nutrients,in order to improve the nutritional value and reduce the glycemic index of wheat noodle,20%(w/w)of white quinoa(WQ),red quinoa(RQ),black qui...Germinated quinoa flour has been proven to be rich in a variety of nutrients,in order to improve the nutritional value and reduce the glycemic index of wheat noodle,20%(w/w)of white quinoa(WQ),red quinoa(RQ),black quinoa(BQ)powder with different germination time were added to wheat noodle.The gemination rate,sprout length,digestion ratio and microstructure of WQ,RQ,and BQ were determined.Also,the characteristics of cooking,texture,digestion and blood glucose of noodles were studied.It was found that the addition of quinoa flour(WQ-0,WQ-1,RQ-0,RQ-1,BQ-0,BQ-3)maintained the cooking and texture characteristics of wheat noodle.Meanwhile,WQ-1,RQ-1,BQ-3 reduced the optimal cooking time and starch digestibility compared with wheat noodle.At the same time,it showed that the addition of WQ-1,BQ-3 significantly reduced the area under the blood glucose curve(AUC)to 132.17,126.83(mmol/L)⋅h,respectively.The correlation analysis verified that the digestion ratio was significantly positively correlated with AUC(p<0.01).It will provide the theoretical basis for the development of new quinoa foods that lower blood sugar.展开更多
The germination experiment was started on March 3,2004,and seeds were collected from July to October in 2003.We analyzed the percentage of germination,days to first germination,germination period and days to 50%germin...The germination experiment was started on March 3,2004,and seeds were collected from July to October in 2003.We analyzed the percentage of germination,days to first germination,germination period and days to 50%germination.Among the 54 examined species,26 species exceeded 80%germination,11 species exceeded 60%–80%germination,8 exceeded 40%–0%,5 exceeded 20%–40%,and 4 showed less than 20%.A principalcomponent analysis revealed that the species were distributed along two statistically independent axes,the first primarily represented the germination rate and the second represented the time of germination process.Based on scores of germination characteristics,cluster analysis of the 54 gramineous species could be divided into 4 distinct groups:rapid,slow,intermediate germinating(germination percentage>50%),and low germinating(germination percentage<50%).The meaning of different groups to the vegetation regeneration was discussed.展开更多
In the previous paper, we reported that the guar seeds were quite sensitive to chilling and a temperature around 10℃ being maintained for more than 8hr would do serious harm to their viability. This paper deals with ...In the previous paper, we reported that the guar seeds were quite sensitive to chilling and a temperature around 10℃ being maintained for more than 8hr would do serious harm to their viability. This paper deals with the sensitivity of other legume seeds to chilling in the early stage of germination.展开更多
Though a lot of work has been done on chilling injury to plants, yet there remains scarcely known about germinating seeds. This paper deals with some physiological changes associated with the chilling injury in the ea...Though a lot of work has been done on chilling injury to plants, yet there remains scarcely known about germinating seeds. This paper deals with some physiological changes associated with the chilling injury in the early stage of germination of legume seeds as well as the preventive effect of chemical treatments.展开更多
We demonstrated that classical biophysical measurements of water dynamics on germinating diaspores(seeds and other dispersal units)can improve the understanding of the germination process in a simpler,safer,and newer ...We demonstrated that classical biophysical measurements of water dynamics on germinating diaspores(seeds and other dispersal units)can improve the understanding of the germination process in a simpler,safer,and newer way.This was done using diaspores of cultivated species as a biological model.To calculate the water dynamics measurements(weighted mass,initial diffusion coefficient,velocity,and acceleration),we used the mass of diaspores recorded over germination time.Weighted mass of germinating diaspores has a similar pattern,independent of the physiological quality,species,or genetic improvement degree.However,the initial diffusion coefficient(related to imbibition per se),velocity,and acceleration(related to the whole germination metabolism)are influenced by species characters,highlighting the degree of genetic improvement and physiological quality.Changes in the inflection of velocity curves demonstrated each phase of germination sensu stricto.There is no pattern related to the number of these phases,which could range between three and six.Regression models can demonstrate initial velocity and velocity increments for each phase,giving an idea of the management of germinative metabolism.Our finds demonstrated that germination is a polyphasic process with a species-specific pattern but still set by the degree of genetic improvement and(or)physiological quality of diaspores.Among the biophysical measurements,velocity has the greatest potential to define the germination metabolism.展开更多
Strontium has similar chemical properties to calcium and has recently been recognized as a non-essential beneficial element for plants.In order to compare the effects of strontium and calcium on improving salt toleran...Strontium has similar chemical properties to calcium and has recently been recognized as a non-essential beneficial element for plants.In order to compare the effects of strontium and calcium on improving salt tolerance of Chinese cabbage during the germination stage,2,4,and 8 mmol/L of SrCl_(2),CaCl_(2) or an equimolar mixture of both were added separately to a 150 mmol/L NaCl solution.The results showed that Ca-Sr addition significantly increased seed viability,seed vigor,seed germination rate and seed germination uniformity of Chinese cabbage compared with the salt-control group.The differences in germination percentage(GP)and germination energy(GE)among the Ca-addition and Sr-addition groups were not significant,and the differences in coefficient of rate of germination(CRG),index of rate of germination(IRG)and coefficient of variation of the germination time(CVT)were relatively small,but clear differences were observed in germination index(GI),vigor index(VI)and coefficient of uniformity of germination(CUG).The results of GI and VI indicated that the higher the concentration of Ca-addition or Sr-addition,the more significant the enhancement of seed vigor.Under saline stress(150 mmol/L NaCl),the Ca-Sr co-addition outperformed Sr-treatment alone,and Ca-addition achieved the highest seed vigor at equivalent concentrations.Furthermore,all Ca-Sr treatments significantly enhanced the uniformity of Chinese cabbage sprouts exposed to 150 mM NaCl,with the best uniformity improved by the addition of 2 and 4 mmol/L SrCl_(2).Ca-Sr treatments increased the salt tolerance of Chinese cabbage sprouts during the germination stage mainly because the Ca2+and Sr2+significantly enhanced plasma membrane stability and reduced oxidative stress(as indicated by decreased contents of malondialdehyde and O2⋅-contents)in sprouts.The decrease of soluble sugar and proline content caused by Ca-Sr addition implies that elevated levels of these osmolytes were not the primary contributors to improved seed germinability in Chinese cabbage.These findings demonstrate that Sr is a beneficial element for enhancing salt tolerance in plants,laying a theoretical foundation for the development and application of strontium in agriculture.展开更多
The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In thi...The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.展开更多
[Objectives]To identify the drought resistance of main wheat varieties in Shandong Province and screen suitable cultivars for dryland cultivation.[Methods]Employing eight varieties including Jimai 60 as test materials...[Objectives]To identify the drought resistance of main wheat varieties in Shandong Province and screen suitable cultivars for dryland cultivation.[Methods]Employing eight varieties including Jimai 60 as test materials,this study simulated drought stress using 20%PEG-6000 and measured changes in germination-stage indicators.A comprehensive evaluation was conducted using the membership function method,incorporating relative coleoptile length,relative germ length,relative radicle length,relative germination rate,relative germination potential,and stress germination index.[Results]Drought stress not only reduced wheat seed germination rate but also inhibited the growth of the germ,coleoptile,and radicle.The D values of the eight varieties were ranked as follows:Jimai 60>Linmai 9>Yannong 999>Shannong 30>Shannong 28>Luyuan 502>Yannong 1212>Jimai 22.Based on D values,the eight dominant wheat varieties were classified into three categories:highly drought-resistant varieties(Linmai 9 and Jimai 60),moderately drought-resistant varieties(Yannong 999 and Shannong 30),and sensitive varieties(the others).Linmai 9 and Jimai 60 are recommended as suitable wheat varieties for dryland cultivation in Shandong Province.[Conclusions]Drought stress induced by 20%PEG-6000 reduced germination rate,germination potential,and germination index of wheat varieties while inhibiting the growth of coleoptiles and radicles.These indicators can provide a preliminary assessment of drought resistance in wheat cultivars.However,since filter paper was selected as the growth medium,root length measurement errors were introduced during root washing,leading to variations in final experimental results.Futuer studies could attempt using sterilized sand as an alternative growth medium.展开更多
基金supported by National Natural Science Foundation of China(No.22036001)。
文摘Seed germination plays a pivotal role in plant growth and undergoes many intricate biochemical changes including lipid metabolism.Nevertheless,little is known about lipid changes and distributions in different structures of soybean seeds during germination.Here,we applied mass spectrometry imaging(MSI)in conjunction with MS-based lipidomics to examine the lipid alterations in the embryo and cotyledon of soybean seeds during germination.To expand the coverage of lipid detection in soybean seeds,we used the novel techniques of matrix-assisted laser desorption/ionization(MALDI)and MALDI coupled with laser-postionization(MALDI-2).The results revealed that compared to MALDI,MALDI-2 enhanced the detected numbers and intensities of lipid species in various lipid classes,except for a few classes(e.g.,sphingomyelin and phosphatidylcholine).Lipidomic data showed that compared to the embryo,the cotyledon demonstrated slower but similar lipid changes during germination.These changes included the reduced levels of glycerolipids,phospholipids,and sterols,as well as the increased levels of lysophospholipids.Data from MALDI&MALDI-2 MSI supported and complemented these lipidomic findings.Our work highlights the significance of integrating lipid profiles and distributions to enhance our understanding of the metabolic pathways involved in seed germination.
基金Supported by Specialized Fund for the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(163201300812618-7)Special Fund for Research and Development of Forestry Nonprofit Industry(200704001)~~
文摘[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.
文摘The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.
文摘To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS) (1.0 g/L) and Triton-X-100 (1.0 mL/L)], whole rice grains soaked in distilled water for 12 h at 30℃were germinated in the dark at 30℃ for five days. The highest germination rate (77.1%) was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter) was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5^th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM) and proteolytic (0 to 0.12 U/g DM) activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L) and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water), whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.
文摘Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried out with three mediums. Experimental results showed that the species had lower percentage of germination on all mediums. The limiting factors for germination were analyzed.
文摘Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.
基金funded by the National Natural Science Foundation of China(31301891)。
文摘The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods,which may lead to high mortality due to rodent predation or fungal infestations.By tracking 2 species of rapidly germinating seeds(Pittosporopsis kerrii,family Icacinaceae;Camellia kissi,family Theaceae),which depend on dispersal by scatter-hoarding rodents,we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture,Southwest China.We found that high seed abundance at the community level was associated with delayed and reduced seed removal,decreased dispersal distance and increased pre-dispersal seed survival for both plant species.High seed abundance was also associated with reduced seed caching of C.kissi,but it showed little effect on seed caching of P.kerrii.However,post-dispersal seed survival for the 2 plant species followed the reverse pattern.High seed abundance in the community was associated with higher post-dispersal survival of P.kerrii seeds,but with lower post-dispersal survival of C.kissi seeds.Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.
基金the National High Technology Research and Development Program of China (Grant No. 2001AA223021) National Key Technologies R&D Programme (Grant No. 2002BA711A14)
文摘Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins. The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction sys- tem were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration. This paper provides important clues which are helpful to understanding the changes in gene expres- sion, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.
基金Supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (30221002).Acknowledgements The authors are grateful to Qi Xie (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for help with the construction of the cDNA library and the yeast two-hybrid techniques and Tim Robbins for providing P. hybrida. The authors also thank Jiayang Li (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for the pB1221-35S:GFP vector.
文摘Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.
基金supported by the State Key Research and Development Plan of China (973) (Project No.2009CB11840)National Key Technologies Research and Development in the Program in the 10th Five-Year Plan (Project No.2006AA100104m 2006AA10Z1B3)China National Science and Technology Specific Project (2008ZX08009-003)
文摘Gly m Bd 28K, Gly m Bd 30K and Gly m Bd 60K are the major soybean (Glycine max (L.) Merr.) allergens limiting the consumption of a good protein source for sensitive individuals. However, little is known about their temporal-spatial expression during seed development and upon germination. The present data shows that soy allergens accumulated in both the embryonic axes and cotyledon, but expression patterns differed depending on the specific allergen. Allergens accumulated sooner and to a greater level in cotyledons than in embryonic axes. Gly m Bd 28 began at 14 d after flowering, 7 to 14 d earlier than Gly m Bd 30K and Gly m Bd 60K. Comparatively, their degradation was faster and more profound in embryonic axes than in cotyledons. Gly m Bd 60K began to decline at 36 h after imbibition and remained detectable up to 108 h in cotyledons. In contrast, the Glym Bd 60K protein was reduced at 24 h, and eventually disappeared at 96 h. In cotyledons Gly m Bd 28K first declined at 24 h, then increased from 36 h to 48 h, followed by its large reduction at 72 h after seed germination. These findings provide useful information on soy allergen biosynthesis and will help move forward towards developing a hypoallergenic soybean for safer food.
基金supported by the 100 Talents Program of the Chinese Academy of Sciences
文摘Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge about the mechanism of seed germination, two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition. Thirty- nine differentially expressed proteins were identified, including 19 down-regulated and 20 up-regulated proteins. Storage proteins and some seed development- and desiccation-associated proteins were down regulated. The changed patterns of these proteins indicated extensive mobilization of seed reserves. By contrast, catabolism-associated proteins were up regulated upon imbibition. Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or up- regulated proteins were also down or up regulated at mRNA level. The expression of these genes was largely consistent at mRNA and protein levels. In providing additional information concerning gene regulation in early plant life, this study will facilitate understanding of the molecular mechanisms of seed germination.
基金Agricultural Development Project by Science and Technology of Shanghai Agriculture and Rural Affairs Committee(2021-02-08-00-12-F00780)Capacity-building project of local universities of Shanghai Science and Technology Commission,China(20060502100).
文摘Germinated quinoa flour has been proven to be rich in a variety of nutrients,in order to improve the nutritional value and reduce the glycemic index of wheat noodle,20%(w/w)of white quinoa(WQ),red quinoa(RQ),black quinoa(BQ)powder with different germination time were added to wheat noodle.The gemination rate,sprout length,digestion ratio and microstructure of WQ,RQ,and BQ were determined.Also,the characteristics of cooking,texture,digestion and blood glucose of noodles were studied.It was found that the addition of quinoa flour(WQ-0,WQ-1,RQ-0,RQ-1,BQ-0,BQ-3)maintained the cooking and texture characteristics of wheat noodle.Meanwhile,WQ-1,RQ-1,BQ-3 reduced the optimal cooking time and starch digestibility compared with wheat noodle.At the same time,it showed that the addition of WQ-1,BQ-3 significantly reduced the area under the blood glucose curve(AUC)to 132.17,126.83(mmol/L)⋅h,respectively.The correlation analysis verified that the digestion ratio was significantly positively correlated with AUC(p<0.01).It will provide the theoretical basis for the development of new quinoa foods that lower blood sugar.
基金supported by the Chinese Key Project for Nature Science (No.90202009).
文摘The germination experiment was started on March 3,2004,and seeds were collected from July to October in 2003.We analyzed the percentage of germination,days to first germination,germination period and days to 50%germination.Among the 54 examined species,26 species exceeded 80%germination,11 species exceeded 60%–80%germination,8 exceeded 40%–0%,5 exceeded 20%–40%,and 4 showed less than 20%.A principalcomponent analysis revealed that the species were distributed along two statistically independent axes,the first primarily represented the germination rate and the second represented the time of germination process.Based on scores of germination characteristics,cluster analysis of the 54 gramineous species could be divided into 4 distinct groups:rapid,slow,intermediate germinating(germination percentage>50%),and low germinating(germination percentage<50%).The meaning of different groups to the vegetation regeneration was discussed.
文摘In the previous paper, we reported that the guar seeds were quite sensitive to chilling and a temperature around 10℃ being maintained for more than 8hr would do serious harm to their viability. This paper deals with the sensitivity of other legume seeds to chilling in the early stage of germination.
文摘Though a lot of work has been done on chilling injury to plants, yet there remains scarcely known about germinating seeds. This paper deals with some physiological changes associated with the chilling injury in the early stage of germination of legume seeds as well as the preventive effect of chemical treatments.
文摘We demonstrated that classical biophysical measurements of water dynamics on germinating diaspores(seeds and other dispersal units)can improve the understanding of the germination process in a simpler,safer,and newer way.This was done using diaspores of cultivated species as a biological model.To calculate the water dynamics measurements(weighted mass,initial diffusion coefficient,velocity,and acceleration),we used the mass of diaspores recorded over germination time.Weighted mass of germinating diaspores has a similar pattern,independent of the physiological quality,species,or genetic improvement degree.However,the initial diffusion coefficient(related to imbibition per se),velocity,and acceleration(related to the whole germination metabolism)are influenced by species characters,highlighting the degree of genetic improvement and physiological quality.Changes in the inflection of velocity curves demonstrated each phase of germination sensu stricto.There is no pattern related to the number of these phases,which could range between three and six.Regression models can demonstrate initial velocity and velocity increments for each phase,giving an idea of the management of germinative metabolism.Our finds demonstrated that germination is a polyphasic process with a species-specific pattern but still set by the degree of genetic improvement and(or)physiological quality of diaspores.Among the biophysical measurements,velocity has the greatest potential to define the germination metabolism.
基金funded by the Natural Science Foundation of Shandong Province(ZR2020MC144)the Scientific Research Training Program for Undergraduates of Qufu Normal University(XJ2024016).
文摘Strontium has similar chemical properties to calcium and has recently been recognized as a non-essential beneficial element for plants.In order to compare the effects of strontium and calcium on improving salt tolerance of Chinese cabbage during the germination stage,2,4,and 8 mmol/L of SrCl_(2),CaCl_(2) or an equimolar mixture of both were added separately to a 150 mmol/L NaCl solution.The results showed that Ca-Sr addition significantly increased seed viability,seed vigor,seed germination rate and seed germination uniformity of Chinese cabbage compared with the salt-control group.The differences in germination percentage(GP)and germination energy(GE)among the Ca-addition and Sr-addition groups were not significant,and the differences in coefficient of rate of germination(CRG),index of rate of germination(IRG)and coefficient of variation of the germination time(CVT)were relatively small,but clear differences were observed in germination index(GI),vigor index(VI)and coefficient of uniformity of germination(CUG).The results of GI and VI indicated that the higher the concentration of Ca-addition or Sr-addition,the more significant the enhancement of seed vigor.Under saline stress(150 mmol/L NaCl),the Ca-Sr co-addition outperformed Sr-treatment alone,and Ca-addition achieved the highest seed vigor at equivalent concentrations.Furthermore,all Ca-Sr treatments significantly enhanced the uniformity of Chinese cabbage sprouts exposed to 150 mM NaCl,with the best uniformity improved by the addition of 2 and 4 mmol/L SrCl_(2).Ca-Sr treatments increased the salt tolerance of Chinese cabbage sprouts during the germination stage mainly because the Ca2+and Sr2+significantly enhanced plasma membrane stability and reduced oxidative stress(as indicated by decreased contents of malondialdehyde and O2⋅-contents)in sprouts.The decrease of soluble sugar and proline content caused by Ca-Sr addition implies that elevated levels of these osmolytes were not the primary contributors to improved seed germinability in Chinese cabbage.These findings demonstrate that Sr is a beneficial element for enhancing salt tolerance in plants,laying a theoretical foundation for the development and application of strontium in agriculture.
基金the Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT) Sari Agricultural Sciences and Natural Resources University (SANRU) for the use of the services and financial supports of this research
文摘The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.
基金Supported by National Wheat Industry Technology System"Linyi Integrated Experimental Station"(CARS-03-66)Shandong Provincial Modern Agricultural Industry Technology System"Linyi Integrated Experimental Station"(SDATT-01-18).
文摘[Objectives]To identify the drought resistance of main wheat varieties in Shandong Province and screen suitable cultivars for dryland cultivation.[Methods]Employing eight varieties including Jimai 60 as test materials,this study simulated drought stress using 20%PEG-6000 and measured changes in germination-stage indicators.A comprehensive evaluation was conducted using the membership function method,incorporating relative coleoptile length,relative germ length,relative radicle length,relative germination rate,relative germination potential,and stress germination index.[Results]Drought stress not only reduced wheat seed germination rate but also inhibited the growth of the germ,coleoptile,and radicle.The D values of the eight varieties were ranked as follows:Jimai 60>Linmai 9>Yannong 999>Shannong 30>Shannong 28>Luyuan 502>Yannong 1212>Jimai 22.Based on D values,the eight dominant wheat varieties were classified into three categories:highly drought-resistant varieties(Linmai 9 and Jimai 60),moderately drought-resistant varieties(Yannong 999 and Shannong 30),and sensitive varieties(the others).Linmai 9 and Jimai 60 are recommended as suitable wheat varieties for dryland cultivation in Shandong Province.[Conclusions]Drought stress induced by 20%PEG-6000 reduced germination rate,germination potential,and germination index of wheat varieties while inhibiting the growth of coleoptiles and radicles.These indicators can provide a preliminary assessment of drought resistance in wheat cultivars.However,since filter paper was selected as the growth medium,root length measurement errors were introduced during root washing,leading to variations in final experimental results.Futuer studies could attempt using sterilized sand as an alternative growth medium.