[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ...[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.展开更多
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of prot...In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.展开更多
According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are prese...According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.展开更多
The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of ...The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects.展开更多
Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tange...Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.展开更多
The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood.Evaluation of these mechanisms is generallybased on extrapolation of observed behavior a...The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood.Evaluation of these mechanisms is generallybased on extrapolation of observed behavior at shallow depths.Three centrifuge model tests wereconducted at RPI's experimental facility to investigate the effects of confining stresses on thedynamic response of a deep horizontal deposit of saturated sand.Liquefaction was observed at highconfining stresses in each of the tests.A system identification procedure was used to estimate theassociated shear strain and stress time histories.These histories revealed a response marked byshear strength degradation and dilative patterns.The recorded accelerations and pore pressures wereemployed to generate visual animations of the models.These visualizations revealed a liquefactionfront traveling downward and leading to large shear strains and isolation of upper soil layers.展开更多
Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the facto...Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models, and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.展开更多
Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra...Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.展开更多
The concept of′Probe detector′is introduced in this paper with its application in geometricmodeling and graphics.In terms of the concept,the authors derive edge data from the CSG datarepresentation and establish a w...The concept of′Probe detector′is introduced in this paper with its application in geometricmodeling and graphics.In terms of the concept,the authors derive edge data from the CSG datarepresentation and establish a wireframe model.展开更多
To describe the spatial tendency and complex relationship of geological structures, a digital modeling based on geographic information system and the visualization of hydroelectric engineering geology information are ...To describe the spatial tendency and complex relationship of geological structures, a digital modeling based on geographic information system and the visualization of hydroelectric engineering geology information are presented. The functions of information visual query, spatial cutting, section drawing, and coupled analysis with hydraulic structures are realized. The geologic model can match the attribute data with the shape data of geological structures, and organize the information for spatial query and analysis of the 3D model. With an application in Laxiwa hydroelectric project on the upriver of Huanghe River, the method provides a 3D parallel section view and query results of geoinformation, and 3D section views of geoinformation along axis of spillway tunnel, and along the 5th axis with underground structures, respectively.展开更多
A conceptual model called virtual borehole is presented in practice engineering.Based on borehole data and the geologic section and by using GMS 6.0,MAPGIS software,the 3D stratum model of urban geologic information i...A conceptual model called virtual borehole is presented in practice engineering.Based on borehole data and the geologic section and by using GMS 6.0,MAPGIS software,the 3D stratum model of urban geologic information is established.The visual expression and analysis of 3D geologic data can be better realized in the open model established.展开更多
While it is very reasonable to use a multigraph consisting of multiple edges between vertices to represent various relationships, the multigraph has not drawn much attention in research. To visualize such a multigraph...While it is very reasonable to use a multigraph consisting of multiple edges between vertices to represent various relationships, the multigraph has not drawn much attention in research. To visualize such a multigraph, a clear layout representing a global structure is of great importance, and interactive visual analysis which allows the multiple edges to be adjusted in appropriate ways for detailed presentation is also essential. A novel interactive two-phase approach to visualizing and exploring multigraph is proposed. The approach consists of two phases: the first phase improves the previous popular works on force-directed methods to produce a brief drawing for the aggregation graph of the input multigraph, while the second phase proposes two interactive strategies, the magnifier model and the thematic-oriented subgraph model. The former highlights the internal details of an aggregation edge which is selected interactively by user, and draws the details in a magnifying view by cubic Bezier curves; the latter highlights only the thematic subgraph consisting of the selected multiple edges that the user concerns. The efficiency of the proposed approach is demonstrated with a real-world multigraph dataset and how it is used effectively is discussed for various potential applications.展开更多
This study focuses on meeting the challenges of big data visualization by using of data reduction methods based the feature selection methods.To reduce the volume of big data and minimize model training time(Tt)while ...This study focuses on meeting the challenges of big data visualization by using of data reduction methods based the feature selection methods.To reduce the volume of big data and minimize model training time(Tt)while maintaining data quality.We contributed to meeting the challenges of big data visualization using the embedded method based“Select from model(SFM)”method by using“Random forest Importance algorithm(RFI)”and comparing it with the filter method by using“Select percentile(SP)”method based chi square“Chi2”tool for selecting the most important features,which are then fed into a classification process using the logistic regression(LR)algorithm and the k-nearest neighbor(KNN)algorithm.Thus,the classification accuracy(AC)performance of LRis also compared to theKNN approach in python on eight data sets to see which method produces the best rating when feature selection methods are applied.Consequently,the study concluded that the feature selection methods have a significant impact on the analysis and visualization of the data after removing the repetitive data and the data that do not affect the goal.After making several comparisons,the study suggests(SFMLR)using SFM based on RFI algorithm for feature selection,with LR algorithm for data classify.The proposal proved its efficacy by comparing its results with recent literature.展开更多
Based on the analysis of whole mining process in metal mines, it was pointed out that the investigation of the heavy metal pollution of tailings should be taken as an important project for a metal mine. Combined with ...Based on the analysis of whole mining process in metal mines, it was pointed out that the investigation of the heavy metal pollution of tailings should be taken as an important project for a metal mine. Combined with the anlysis of the characteristics of tailings, it is found that the transformation of the heavy metal dissolution process, the heavy metal ions migration with groundwater and the heavy metal transport in porous media are three key aspects. Accordingly, the models of heavy metal pollution were established with providing boundary conditions. Depending upon a case of Ibnglushan Copper Mine railings and its relevant area from Google maps', a three-dimensional grid view of the tailings was set up. By application of Fluent software, the contaminated process of the heavy metal pollutants in the tailings was shown through digital visualization pattern.展开更多
3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research...3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.展开更多
Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstr...Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstrated the value of architectural visual products in actual application projects.Based on the digital image technology,virtual presentation of future scenes simulates architecture design,architectural renderings and multimedia videos.Therefore,it can help design agencies transform the theoretical design concept into a lively and realistic visual which can provide the audience with a clearer understanding of the engineering and construction projects.However,it is challenging for designers to produce satisfactory renderings due to the frequent fault data during rendering.In this paper,we use the 3Ds MAX as the operating platform and we present an algorithm based on the Bayesian network to construct a vector representation of the fault data.On this basis,a case study of 3D Max’application has also been presented.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
With the rapid development of computer graphics,distributed-computing and Internet,it is possible to achieve Internet-based virtual city.This paper dwells on the method of the terrain and its feature modeling and comp...With the rapid development of computer graphics,distributed-computing and Internet,it is possible to achieve Internet-based virtual city.This paper dwells on the method of the terrain and its feature modeling and complex entity modeling in the virtual city.Then,discusses the method for Internet-based virtual city 3D visualization and the design of the Browser/Server architecture of the system of virtual city in the network environment.Finally,Java and Java 3D are used to show an experiment example,and the related conclusion about Internet-based virtual city 3D displaying and the client-side interactive operation is given.展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
基金Supported by Natural Science Foundation of Beijing City (4081001)National Agriculture Science and Technology Transformation FundProject (2009GB2A000001)~~
文摘[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
基金Projects 59904001 supported by National Natural Science Foundation of China
文摘In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.
文摘According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.
文摘The 3D visualization model of slop with structural plane can displayed the characters of structural plane in slop directly, and illustrated the spatial combination. It is a modem and critical question in the field of geotechnical engineering. Based on the peculiarity of the reconnaissance and the research of the visualization by formers, systemized the method fit for building 3D visualization model of slop with structural plane. Write the special program with Visual C^-+ computer language and illustrated it by OpenGL, the program can displayed and captured the random section plane. The program has a satisfied result by proving with the real projects.
文摘Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.
基金This research was supported by the National Science Foundation,Grant No.CMS-984754(Dr.C.Astill program manager)the US Army Engineer Research and Development Center.
文摘The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood.Evaluation of these mechanisms is generallybased on extrapolation of observed behavior at shallow depths.Three centrifuge model tests wereconducted at RPI's experimental facility to investigate the effects of confining stresses on thedynamic response of a deep horizontal deposit of saturated sand.Liquefaction was observed at highconfining stresses in each of the tests.A system identification procedure was used to estimate theassociated shear strain and stress time histories.These histories revealed a response marked byshear strength degradation and dilative patterns.The recorded accelerations and pore pressures wereemployed to generate visual animations of the models.These visualizations revealed a liquefactionfront traveling downward and leading to large shear strains and isolation of upper soil layers.
基金Supported by National Key Technology R&D Program(2006BAK04B04) National Natural Science Foundation of China(50604003) Specialized Research Fund for the Doctoral Program of Higher Education(2006008005)
文摘Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models, and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.
基金funded by National Science and Technology Major Projects(2017ZX05009004,2016ZX05058003)Beijing Natural Science Foundation(2173061)and State Energy Center for Shale Oil Research and Development(G5800-16-ZS-KFNY005).
文摘Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.
文摘The concept of′Probe detector′is introduced in this paper with its application in geometricmodeling and graphics.In terms of the concept,the authors derive edge data from the CSG datarepresentation and establish a wireframe model.
基金Supported by National Natural Science Foundation of China (No. 50179023) and Open Foundation of State Key Laboratory of High-Velocity Flow, Sichuan University (No.0404).
文摘To describe the spatial tendency and complex relationship of geological structures, a digital modeling based on geographic information system and the visualization of hydroelectric engineering geology information are presented. The functions of information visual query, spatial cutting, section drawing, and coupled analysis with hydraulic structures are realized. The geologic model can match the attribute data with the shape data of geological structures, and organize the information for spatial query and analysis of the 3D model. With an application in Laxiwa hydroelectric project on the upriver of Huanghe River, the method provides a 3D parallel section view and query results of geoinformation, and 3D section views of geoinformation along axis of spillway tunnel, and along the 5th axis with underground structures, respectively.
文摘A conceptual model called virtual borehole is presented in practice engineering.Based on borehole data and the geologic section and by using GMS 6.0,MAPGIS software,the 3D stratum model of urban geologic information is established.The visual expression and analysis of 3D geologic data can be better realized in the open model established.
基金supported by the National Natural Science Fundation of China(61103081)
文摘While it is very reasonable to use a multigraph consisting of multiple edges between vertices to represent various relationships, the multigraph has not drawn much attention in research. To visualize such a multigraph, a clear layout representing a global structure is of great importance, and interactive visual analysis which allows the multiple edges to be adjusted in appropriate ways for detailed presentation is also essential. A novel interactive two-phase approach to visualizing and exploring multigraph is proposed. The approach consists of two phases: the first phase improves the previous popular works on force-directed methods to produce a brief drawing for the aggregation graph of the input multigraph, while the second phase proposes two interactive strategies, the magnifier model and the thematic-oriented subgraph model. The former highlights the internal details of an aggregation edge which is selected interactively by user, and draws the details in a magnifying view by cubic Bezier curves; the latter highlights only the thematic subgraph consisting of the selected multiple edges that the user concerns. The efficiency of the proposed approach is demonstrated with a real-world multigraph dataset and how it is used effectively is discussed for various potential applications.
文摘This study focuses on meeting the challenges of big data visualization by using of data reduction methods based the feature selection methods.To reduce the volume of big data and minimize model training time(Tt)while maintaining data quality.We contributed to meeting the challenges of big data visualization using the embedded method based“Select from model(SFM)”method by using“Random forest Importance algorithm(RFI)”and comparing it with the filter method by using“Select percentile(SP)”method based chi square“Chi2”tool for selecting the most important features,which are then fed into a classification process using the logistic regression(LR)algorithm and the k-nearest neighbor(KNN)algorithm.Thus,the classification accuracy(AC)performance of LRis also compared to theKNN approach in python on eight data sets to see which method produces the best rating when feature selection methods are applied.Consequently,the study concluded that the feature selection methods have a significant impact on the analysis and visualization of the data after removing the repetitive data and the data that do not affect the goal.After making several comparisons,the study suggests(SFMLR)using SFM based on RFI algorithm for feature selection,with LR algorithm for data classify.The proposal proved its efficacy by comparing its results with recent literature.
文摘Based on the analysis of whole mining process in metal mines, it was pointed out that the investigation of the heavy metal pollution of tailings should be taken as an important project for a metal mine. Combined with the anlysis of the characteristics of tailings, it is found that the transformation of the heavy metal dissolution process, the heavy metal ions migration with groundwater and the heavy metal transport in porous media are three key aspects. Accordingly, the models of heavy metal pollution were established with providing boundary conditions. Depending upon a case of Ibnglushan Copper Mine railings and its relevant area from Google maps', a three-dimensional grid view of the tailings was set up. By application of Fluent software, the contaminated process of the heavy metal pollutants in the tailings was shown through digital visualization pattern.
文摘3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.
文摘Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstrated the value of architectural visual products in actual application projects.Based on the digital image technology,virtual presentation of future scenes simulates architecture design,architectural renderings and multimedia videos.Therefore,it can help design agencies transform the theoretical design concept into a lively and realistic visual which can provide the audience with a clearer understanding of the engineering and construction projects.However,it is challenging for designers to produce satisfactory renderings due to the frequent fault data during rendering.In this paper,we use the 3Ds MAX as the operating platform and we present an algorithm based on the Bayesian network to construct a vector representation of the fault data.On this basis,a case study of 3D Max’application has also been presented.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
文摘With the rapid development of computer graphics,distributed-computing and Internet,it is possible to achieve Internet-based virtual city.This paper dwells on the method of the terrain and its feature modeling and complex entity modeling in the virtual city.Then,discusses the method for Internet-based virtual city 3D visualization and the design of the Browser/Server architecture of the system of virtual city in the network environment.Finally,Java and Java 3D are used to show an experiment example,and the related conclusion about Internet-based virtual city 3D displaying and the client-side interactive operation is given.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.