期刊文献+
共找到713篇文章
< 1 2 36 >
每页显示 20 50 100
Population structure,selection signal and introgression of gamecocks revealed by whole genome sequencing
1
作者 Naiyi Xu Linyun Zhang +5 位作者 Feifan Chen Zhengfu Feng Jiangtao Zheng DongHua Li Yongju Zhao Xiangtao Kang 《Journal of Animal Science and Biotechnology》 2025年第3期996-1008,共13页
Background As an important genetic resource of chickens,gamecock has unique morphological and behavioral characteristics such as large size,muscular development and strong aggression,making it a good model for studyin... Background As an important genetic resource of chickens,gamecock has unique morphological and behavioral characteristics such as large size,muscular development and strong aggression,making it a good model for studying muscle development and behavior patterns,as well as an excellent breeding material.Gamecocks are distributed worldwide,forming different breeds and strains.However,the single or multiple origin of global gamecocks has not been fully established and much remains unknown about genetic introgression events between gamecocks and other chickens.Therefore,in this study,based on whole genome data of gamecocks,Chinese indigenous chickens,commercial chickens and wild jungle fowls,we performed population structure analysis,selection signal analysis,and genomic introgression analysis of gamecocks.Results The population structure analysis revealed that gamecocks have multiple origins.In addition,we used Fst,π-Ratio and XP-EHH methods to explore the candidate signatures of positive selection in gamecocks.A total number of fifteen shared candidate genes were identified using the three different detection strategies.Among these candidate genes,ETV1,DGKB,AGMO,MEOX2,ISPD and PLCB4 are related to the growth and muscle development,fighting performance and neurodevelopment of gamecocks.Furthermore,we detected the introgression event at the MYBPHL region from the Gallus sonneratii into Euramerican gamecocks and at the CPZ gene region from the Gallus gallus gallus into multiple gamecock populations,respectively,indicating the introgression from the wild junglefowl may impact the skeletal and muscle development as well as aggressive behavior of gamecocks.Conclusions In summary,we conducted a genome-wide exploration of gamecocks from multiple regions worldwide.Our analysis confirmed multiple origins of gamecocks and detected several candidate genes that are possibly related to important traits and characteristics in gamecocks.More importantly,this is the first study that has detected introgression events and genes from wild jungle fowls to gamecocks,which provides evidence of the wild jungle fowls contributing to the genetic diversity of gamecocks.Our findings offer new perspectives on the impact of introgression on gamecocks,and provide a basis for further resource conservation and utilization of gamecock,as well as provide excellent material for the genetic improvement of domestic chickens. 展开更多
关键词 Gamecock genomic introgression Population structure Selection signal Whole genome re-sequence
在线阅读 下载PDF
Erratum to"GenomeSyn:a bioinformatics tool for visualizing genome synteny and structural variations"[J.Genet.Genom.(2022)49,11741176]
2
作者 Zu-Wen Zhou Zhi-Guang Yu +4 位作者 Xiao-Ming Huang Jin-Shen Liu Yi-Xiong Guo Ling-Ling Chen Jia-Ming Song 《Journal of Genetics and Genomics》 2025年第8期1068-1069,共2页
Fig.1.The GenomeSyn tool for visualizing genome synteny and characterizing structural variations.A:The first synteny visualization map showed the detailed information of two or three genomes and can display structural... Fig.1.The GenomeSyn tool for visualizing genome synteny and characterizing structural variations.A:The first synteny visualization map showed the detailed information of two or three genomes and can display structural variations and other annotation information.B:The second type of visualization map was simple and only showed the synteny relationship between the chromosomes of two or three genomes.C:Multiplatform general GenomeSyn submission page,applicable to Windows,MAC and web platforms;other analysis files can be entered in the"other"option.The publisher would like to apologise for any inconvenience caused. 展开更多
关键词 two three genomes structural variations synteny relationship genomesyn visualizing genome synteny characterizing structural variationsa genome synteny synteny visualization map
原文传递
Structural variation in Heinong 531 soybean genome underlies yield and resistance traits
3
作者 Yu Tian Jia You +8 位作者 Zihao Zheng Hao Zhang Shiyu Guo Xueqing Wang Jinrong Li Lichun Huang Jiajun Wang Ying-hui Li Li-juan Qiu 《The Crop Journal》 2025年第5期1574-1584,共11页
Soybean(Glycine max)is a globally important crop that serves as a primary source of edible oil and protein for both humans and animals.Cultivated soybean varieties exhibit considerable genetic diversity depending on t... Soybean(Glycine max)is a globally important crop that serves as a primary source of edible oil and protein for both humans and animals.Cultivated soybean varieties exhibit considerable genetic diversity depending on their geographical origin.Heinong 531(HN531)is an elite cultivar that was released in China in June 2021 with 22.34%seed oil,high resistance to soybean cyst nematode(SCN)race 3,and enhanced yield.However,the genetic basis for these desirable agronomic traits is unclear.In this study,we generated a high-quality genome assembly for HN531 and used it to systematically analyze genes related to agronomic traits such as resistance to SCN.The assembled genome spans 981.20 Mb,featuring a contig N50 of 19.47 Mb,and contains 58,151 predicted gene models.Pan-genomic comparison with 27 previously reported soybean genomes revealed 95,071 structural variants(SVs)of>50 bp,of which 602 were HN531-specific.Furthermore,we identified a copy number variation at rhg1 that underlies resistance to SCN,and we found elite alleles of functional genes underlying important agronomic traits such as seed oil content,adaptability,and yield.This high-quality HN531 genome can be used to explore the genetic basis for the excellent agronomic traits of this cultivar,and is a valuable resource for breeders aiming to improve HN531 and related cultivars. 展开更多
关键词 SOYBEAN genome assembly structural variation R genes SCN
在线阅读 下载PDF
Gossypium latifolium genome reveals the genetic basis of domestication of upland cotton from semi-wild races to cultivars 被引量:1
4
作者 Chao Fu Nian Wang +7 位作者 Qingying Meng Zhiyong Xu Yu Le Xianlong Zhang Yangyang Wei Renhai Peng Chao Shen Zhongxu Lin 《The Crop Journal》 2025年第3期929-941,共13页
The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported... The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported a high-quality genome assembly of G.latifolium.Comparative genome analyses revealed substantial variations in both gene group composition and genomic sequences across 13 cotton genomes,including the expansion of photosynthesis-related gene groups in G.latifolium compared with other races and the pivotal contribution of structural variations(SVs)to G.hirsutum domestication.Based on the resequencing reads and constructed pan-genome of upland cotton,co-selection regions and SVs with significant frequency differences among different populations were identified.Genes located in these regions or affected by these variations may characterize the differences between G.latifolium and other races,and could be involved in maintenance of upland cotton domestication phenotypes.These findings may assist in mining genes for upland cotton improvement and improving the understanding of the genetic basis of upland cotton domestication. 展开更多
关键词 G.latifolium genome assembly Comparative genome analysis structural variations DOMESTICATION
在线阅读 下载PDF
The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance
5
作者 Alex Z.Zaccaron Ioannis Stergiopoulos 《Journal of Genetics and Genomics》 2025年第5期628-640,共13页
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions.In this review,we delve into the dynamic organization of fun... Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions.In this review,we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance.We examine key features and the heterogeneity of genomes across different fungal species,including but not limited to their chromosome content,DNA composition,distribution and arrangement of their content across chromosomes,and other major traits.We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions.Fungal genomes exhibit large variations in size,gene content,and structural features,such as the abundance of transposable elements(TEs),compartmentalization into gene-rich and TE-rich regions,and the presence or absence of dispensable chromosomes.Genomic structural variations are equally diverse in fungi,ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds,to targeted deletion of effector encoding genes that may promote virulence.Finally,the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides.Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance. 展开更多
关键词 Chromosomes FUNGI genomICS PATHOGENS structural variation Transposable elements
原文传递
Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae
6
作者 Xueqing Yan Runxian Yu +1 位作者 Jinpeng Wang Yuannian Jiao 《Journal of Genetics and Genomics》 2025年第6期761-773,共13页
Chromosomal rearrangements(CRs)often cause phenotypic variations.Although several major rearrangements have been identified in Triticeae,a comprehensive study of the order,timing,and breakpoints of CRs has not been co... Chromosomal rearrangements(CRs)often cause phenotypic variations.Although several major rearrangements have been identified in Triticeae,a comprehensive study of the order,timing,and breakpoints of CRs has not been conducted.Here,we reconstruct high-quality ancestral genomes for the most recent common ancestor(MRCA)of the Triticeae,and the MRCA of the wheat lineage(Triticum and Aegilops).The protogenes of MRCA of the Triticeae and the wheat lineage are 22,894 and 29,060,respectively,which were arranged in their ancestral order.By partitioning modern Triticeae chromosomes into sets of syntenic regions and linking each to the corresponding protochromosomes,we revisit the rye chromosome structural evolution and propose alternative evolutionary routes.The previously identified 4L/5L reciprocal translocation in rye and Triticum urartu is found to have occurred independently and is unlikely to be the result of chromosomal introgression following distant hybridization.We also clarify that the 4AL/7BS translocation in tetraploid wheat was a bidirectional rather than unidirectional translocation event.Lastly,we identify several breakpoints in protochromosomes that independently reoccur following Triticeae evolution,representing potential CR hotspots.This study demonstrates that these reconstructed ancestral genomes can serve as special comparative references and facilitate a better understanding of the evolution of structural rearrangements in Triticeae. 展开更多
关键词 Chromosome rearrangement TRITICEAE EVOLUTION Ancestral genome reconstruction structure variations TRANSLOCATION
原文传递
High-quality reference genome decoding and population evolution analysis of prickly Sechium edule
7
作者 Xiaojing Wang Shaoqin Shen +3 位作者 Yanhong Fu Rui Cao Yunfeng Wei Xiaoming Song 《Horticultural Plant Journal》 2025年第2期827-838,共12页
Sechium edule(chayote)is an important vegetable crop belonging to the Cucurbitaceae family.To decipher the chayote genome,a highquality chromosome-level chayote genome was obtained by genome sequencing and bioinformat... Sechium edule(chayote)is an important vegetable crop belonging to the Cucurbitaceae family.To decipher the chayote genome,a highquality chromosome-level chayote genome was obtained by genome sequencing and bioinformatic analysis.The total length was612.91 Mb,and 25755 genes were detected in the chayote genome.The contig N50 was more than 20.01 Mb,and the scaffold N50 was over47.11 Mb.Of the genome,60.35%were composed of repetitive sequences,and 31.18%of genome sequences belonged to long-terminal repeats.A global alignment of homologous regions in chayote and other Cucurbitaceae plant genomes was constructed using grape as a reference.Based on this genome-wide and global alignment map,researchers can easily identify homologous collinear genes of the studied genomes in most Cucurbitaceae species.Twenty-five chayote accessions were divided into two subgroups based on phylogenetic tree,population structure analysis,and principal component analysis using genome re-sequencing data.The chayote genome,re-sequencing dataset,and comprehensive genomic analysis will accelerate comparative and functional genomic analysis of chayote and other Cucurbitaceae species in the future. 展开更多
关键词 Sechium edule Whole-genome duplication Divergence time genome evolution Population structure CUCURBITACEAE
在线阅读 下载PDF
Phylogenetically clustering of rhizobia by genome structure:application to unclassified Rhizobium 被引量:4
8
作者 ZHENG Jun-fang LIU Gui-rong LIU Shu-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期530-536,共7页
Previous research reveals that the genome structures of rhizobial type strains and reference strains can reflect their phylogenetic relationships. In order to further explore the potential application of genome struct... Previous research reveals that the genome structures of rhizobial type strains and reference strains can reflect their phylogenetic relationships. In order to further explore the potential application of genome structure as a phylogenetic marker in rhizobial natural taxonomy, this study analyzed the genome structures of 29 unclassified nodule bacteria isolated from the root nodules of leguminous trees, Robinia sp., Dalbergia spp., and A lbizia spp. and 7 rhizobial reference strains by I-CeuI cleavage, then clustered these bacteria phylogenetically based on their genome structures and compared these clusters with those based on numerical taxonomy and 16S rDNA PCR-RFLP. Eleven phylogenetic clusters were obtained, The clusters were in large part consistent with those based on numerical taxonomy and 16S rDNA PCR-RFLP. Also there are inconsistent clusters based on the above three methods. But results are completely consistent with 16S rRNA clusters. This suggested that the genome structure clustering method can be used to lastly identify root nodule isolates and detect their phylogenetic relationships. The credibility and repeatability of the results, together with the simplicity and possibility to analyze a large number of strains in a short time of the method, indicates the broad potential application of genome structure as phylogenetic marker to categorize rhizobial isolates and should in the future facilitate biodiversity studies. 展开更多
关键词 RHIZOBIA genome structure phylogenetic analysis pulsed field gel electrophoresis I-CeuI
在线阅读 下载PDF
Characterization of the sequence spectrum of DNA based on the appearance frequency of the nucleotide sequences of the genome——A new method for analysis of genome structure 被引量:3
9
作者 Masatoshi Nakahara Masaharu Takeda 《Journal of Biomedical Science and Engineering》 2010年第4期340-350,共11页
The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes... The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes. Based on the appearance frequency of the key sequences of the genome, any DNA sequences on the genome could be expressed as a sequence spectrum with the adjoining base sequences, which could be used to study the corresponding biological phenomena. In this paper, we used 64 successive three- base sequences (triplets) as the key sequences, and determined and compared the spectra of specific genes to the chromosome, or specific genes to tRNA genes in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Escherichia coli. Based on these analyses, a gene and its corresponding position on the chromosome showed highly similar spectra with the same fold enlargement (approximately 400-fold) in the S. cerevisiae, S. pombe and E. coli genomes. In addition, the homologous structure of genes that encode proteins was also observed with appropriate tRNA gene(s) in the genome. This analytical method might faithfully reflect the encoded biological information, that is, the conservation of the base sequences was to make sense the conservation of the translated amino acids sequence in the coding region, and might be universally applicable to other genomes, even those that consisted of multiple chromosomes. 展开更多
关键词 APPEARANCE FREQUENCY of TRIPLET in genome Base SEQUENCE SELF-SIMILARITY Analytical Method of genome structure
暂未订购
A Crowned Killer’s Ré sumeé: Genome, Structure, Receptors, and Origin of SARS-CoV-2 被引量:2
10
作者 Shichuan Wang Mirko Trilling +5 位作者 Kathrin Sutter Ulf Dittmer Mengji Lu Xin Zheng Dongliang Yang Jia Liu 《Virologica Sinica》 SCIE CAS CSCD 2020年第6期673-684,共12页
The recent emergence and rapid global spread of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) pose an unprecedented medical and socioeconomic crisis, and the disease caused by it, Coronavirus disease... The recent emergence and rapid global spread of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) pose an unprecedented medical and socioeconomic crisis, and the disease caused by it, Coronavirus disease 2019(COVID-19),was declared a pandemic by the World Health Organization(WHO) on March 11, 2020. Chinese scientists and physicians rapidly identified the causative pathogen, which turned out to be a novel betacoronavirus with high sequence similarities to bat and pangolin coronaviruses. The scientific community has ignited tremendous efforts to unravel the biological underpinning of SARS-CoV-2, which constitutes the foundation for therapy and vaccine development strategies. Here, we summarize the current state of knowledge on the genome, structure, receptor, and origin of SARS-CoV-2. 展开更多
关键词 CORONAVIRUS Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) Coronavirus disease 2019(COVID-19) genome structure Receptor ORIGIN
原文传递
Toward Elucidating the Structure of Tetraploid Cotton Genome
11
作者 GUO Wang-zhen(National Key Laboratory of Crop Genetics and Germplasm Enhancement,Cotton Research Institute,Nanjing Agricultural University,Nanjing 210095,China) 《棉花学报》 CSCD 北大核心 2008年第S1期25-,共1页
Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evoluti... Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evolutionary studies of the species.Here,we employed GeneTrek and 展开更多
关键词 Toward Elucidating the structure of Tetraploid Cotton genome BAC gene
在线阅读 下载PDF
Comparative Analysis of the Exon-Intron Structure in Eukaryotic Genomes
12
作者 Yongfa Li Yanhua Xu Zhaowu Ma 《Yangtze Medicine》 2017年第1期50-64,共15页
The exon numbers and lengths vary in different eukaryotic species. With increasing completed genomic sequences, it is indispensable to reanalyze the gene organization in diverse eukaryotic genomes. We performed a larg... The exon numbers and lengths vary in different eukaryotic species. With increasing completed genomic sequences, it is indispensable to reanalyze the gene organization in diverse eukaryotic genomes. We performed a large-scale comparative analysis of the exon-intron structure in 72 eukaryotic organisms, including plants, fungi and animals. We confirmed that the exon-intron structure varies massively among eukaryotic genomes and revealed some lineage-specific features of eukaryotic genes. These include a teleost-specific exon-intron structure pattern, relatively small introns and large exons in fungi and algae, and a gradual expansion of introns in vertebrates. Furthermore, the conservation analysis of exon-intron boundaries indicates that several bases near splice site junctions are different in introns with variable length among different species. After comparison, we identified a trend showing increases in intron densities and lengths in diverse species from fungi, plants, invertebrates to vertebrates, while it was the opposite in relation to exon lengths. The statistical properties of eukaryotic genomic organization suggest that genome-specific features are preserved by diverse evolutionary processes, which paves way for further research on the diversification of eukaryotic evolution. 展开更多
关键词 Exon-Intron structure EUKARYOTIC genome EVOLUTION
暂未订购
The occurrence,inheritance,and segregation of complex genomic structural variation in synthetic Brassica napus 被引量:2
13
作者 Dandan Hu Jin Lu +12 位作者 Wenwen Li Yinghui Yang Junxiong Xu Han Qin Hao Wang Yan Niu Huaiqi Zhang Qingqing Liu Xiangxiang He Annaliese S.Mason JChris Pires Zhiyong Xiong Jun Zou 《The Crop Journal》 SCIE CSCD 2024年第2期515-528,共14页
"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic s... "Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation. 展开更多
关键词 ALLOPOLYPLOID Large genome structural variation Linkage mapping Synthetic polyploids Inheritance and segregation
在线阅读 下载PDF
GenomeSyn:a bioinformatics tool for visualizing genome synteny and structural variations 被引量:6
14
作者 Zu-Wen Zhou Zhi-Guang Yu +4 位作者 Xiao-Ming Huang Jin-Shen Liu Yi-Xiong Guo Ling-Ling Chen Jia-Ming Song 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第12期1174-1176,共3页
Advances in the next-generation and long-read sequencing technologies have promoted the development of genome-wide comparative genomics analysis,and constructing pangenomes and identifying structural variations(SVs)ar... Advances in the next-generation and long-read sequencing technologies have promoted the development of genome-wide comparative genomics analysis,and constructing pangenomes and identifying structural variations(SVs)are becoming the frontier of genomics.Comparative genomics is of critical importance for determining the gene function and the evolutionary basis of traits. 展开更多
关键词 TRAITS genome structurAL
原文传递
Analysis on Genomic Structure Changes and Diversity of Introgression Lines in Dongxiang Wild Rice(Oryza rufipogon Griff.)
15
作者 邓晓娟 罗向东 +4 位作者 谢建坤 万勇 胡标林 曹娟芳 戴亮芳 《Agricultural Science & Technology》 CAS 2012年第1期93-97,共5页
[Objective] The aim of the study was to make research on genomic struc- ture variation and variety analysis of Dongxiang wild rice. [Method] Introgression groups of BC1F6 were based on donor of Oryza rufipogon Griff. ... [Objective] The aim of the study was to make research on genomic struc- ture variation and variety analysis of Dongxiang wild rice. [Method] Introgression groups of BC1F6 were based on donor of Oryza rufipogon Griff. and receptor of O. sativa sp. indica Kate. Strains of 239 in the group were analyzed on Polymor- phism with the help of 25 couples of SSR primers distributed in 12 pairs of chromo- somes. [Result] Gene fragments of O. rufipogon Griff. were found penetrated in the 25 microsatellite sites and most of the groups kept the parents of Xieqinzao B or DNA sequence of O. rufipogon Griff. The average rate of recurrent homozygous bands was 78.13% in the ILs, but the highest was 94.98% (amplified by primer RM131) and the lowest was 60.25% (RM171). The average rate of donor homozy- gous bands was 13.37%, but the highest was 32.64% (RM171) and the lowest was 2.93% (RM1095). There were numerous heterozygous sites in the population and the average heterozygosis rate was 5.62%, while the highest was 10.04%(RM401). Moreover, we found some parental fragments were lost and some novel fragments were not detected in either parent in BC1F6 population. The average rate of lost bands was 2.88%, while the highest was 13.39% (RM311) and the lowest was 0 (RM401). The average rate of new bands was 1%. The average of Nei's gene di- versity (He) and Shannon's Information index (I) were 0.276 and 0.457 respectively in high generation of introgression lines. [Conclusion] The study demonstrated that distant hybridization led to extensive genetic and epigenetic variations in high gener- ation of introgression lines, which expanded the base of genetic variation and laid an important foundation for rice improvement and germplasm innovation. 展开更多
关键词 Oryza rufipogon Griff. Introgression lines SSR analysis genomic structure changes Genetic variation
在线阅读 下载PDF
Structural Variation Analysis of Mutated Nannochloropsis oceanica Caused by Zeocin Through Genome Re-Sequencing 被引量:3
16
作者 LIN Genmei ZHANG Zhongyi +2 位作者 GUO Li DING Haiyan YANG Guanpin 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1225-1230,共6页
Zeocin can cause double strand breaks of DNA and thus may be employed as a mutagen. In this study, two strains of Nannochloropsis oceanica, the wild and the Zeocin-tolerant strains, were re-sequenced to verify such fu... Zeocin can cause double strand breaks of DNA and thus may be employed as a mutagen. In this study, two strains of Nannochloropsis oceanica, the wild and the Zeocin-tolerant strains, were re-sequenced to verify such function of Zeocin, The results showed that Zeocin can mutate the N. oceanica genome and cause the structural variation. Zeocin either swept away or selected the alleles of genes functioning in ubiquitin-mediated proteolysis, alpha-linolenic acid metabolism, ascorbate and aldarate metabolism, ribosome biogenesis, and circadian rhythm, indicating that N. oceanica may have adjusted its metabolic performances for protein, carbohydrate, and lipid, and changed its ribosome biosynthesis and living rhythm to survive in Zeocin containing medium. In addition, Zeocin caused mutation may have influenced the expression of a set of tanscription factors. It was concluded that Zeocin effectively caused the structural variation of the genome of N. oceanica, and forced the microalgae to select out the alleles of a set of genes around these variations in order to adapt to Zeocin containing medium. Further studies on the genetic basis of the phenotypic adaptation of this haploid and asexual microalga and the application of Zeocin to its genetic improvement are very important. 展开更多
关键词 Nannochloropsis oceanica Zeocin MUTATION genome re-sequencing structural variation
在线阅读 下载PDF
Investigation of the genetic etiology in male infertility with apparently balanced chromosomal structural rearrangements by genome sequencing 被引量:2
17
作者 Matthew Hoi Kin Chau Ying Li +7 位作者 Peng Dai Mengmeng Shi Xiaofan Zhu Jacqueline Pui Wah Chung Yvonne K Kwok Kwong Wai Choy Xiangdong Kong Zirui Dong 《Asian Journal of Andrology》 SCIE CAS CSCD 2022年第3期248-254,共7页
Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1%of azoospermia or severe oligospermia.However,the underlying mechanisms of pathogenesis and... Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1%of azoospermia or severe oligospermia.However,the underlying mechanisms of pathogenesis and etiologies are still largely unknown.Herein,we investigated apparently balanced interchromosomal structural rearrangements in six cases with azoospermia/severe oligospermia to comprehensively identify and delineate cryptic structural rearrangements and the related copy number variants.In addition,high read-depth genome sequencing(GS)(30-fold)was performed to investigate point mutations causative of male infertility.Mate-pair GS(4-fold)revealed additional structural rearrangements and/or copy number changes in 5 of 6 cases and detected a total of 48 rearrangements.Overall,the breakpoints caused truncations of 30 RefSeq genes,five of which were associated with spermatogenesis.Furthermore,the breakpoints disrupted 43 topological-associated domains.Direct disruptions or potential dysregulations of genes,which play potential roles in male germ cell development,apoptosis,and spermatogenesis,were found in all cases(n=6).In addition,high read-depth GS detected dual molecular findings in case MI6,involving a complex rearrangement and two point mutations in the gene DNAH1.Overall,our study provided the molecular characteristics of apparently balanced interchromosomal structural rearrangements in patients with male infertility.We demonstrated the complexity of chromosomal structural rearrangements,potential gene disruptions/dysregulation and single-gene mutations could be the contributing mechanisms underlie male infertility. 展开更多
关键词 AZOOSPERMIA balanced structural rearrangements genome sequencing male infertility severe oligospermia
原文传递
Genomic structure analysis of SNC6, a progesterone-receptor associated protein gene, and cloning and characterization of its 5'-flanking region 被引量:1
18
作者 曹江 郑树 +2 位作者 叶景佳 耿礼义 方永明 《Journal of Zhejiang University Science》 CSCD 2002年第1期100-105,共6页
Objective: To analyze the genomic structure of SNC6, a progesterone\|receptor associated protein gene and its regulatory elements in its 5'\|flanking region. Methods: Genomic sequence from GenBank database (access... Objective: To analyze the genomic structure of SNC6, a progesterone\|receptor associated protein gene and its regulatory elements in its 5'\|flanking region. Methods: Genomic sequence from GenBank database (accession number: Z98048) covering the whole SNC6 gene was used to analyze the genomic structure of SNC6 and design primers for PCR amplification of its 5'\|flanking region. A 1894 bp fragment of the 5'\|flanking region \{(-1814\} to +75) was cloned by PCR using genomic DNA from a healthy donor peripheral blood lymphocyte as template. This fragment, as well as 3 shorter derivative fragments (1423 bp, 632 bp and 416 bp, which correspond to -1344 to +75, -552 to +75 and -337 to +75 respectively), were subcloned into pGL2 series luciferase reporter vectors. These constructs were introduced into colorectal cancer cell line SW620 for transient expression of reporter gene and luciferase activities were measured. Results: The genomic structure analysis showed there are 12 exons for SNC6 gene, which spans 32017 bp (nt71529 to nt39513 in Z98048 sequence). All transfected SW620 cells with the above 5\|flanking region\|containing constructs showed luciferase activities. The highest luciferase activities were measured in transfected cells with vectors containing 1894 bp fragments, and the lowest luciferase activities were measured in transfected cells with vectors containing 416 bp fragments. Luciferase activities were higher in transfected cells with vectors containing 632 bp fragments than that in transfected cells with vectors containing 1423 bp fragments. Conclusion: The basic transcription\|promoting element (promoter) for SNC6 expression resides between 0 to -337, and two transcription\|enhancing elements (enhancer) resides between -337 to -552 and -1344 to -1814, whereas one transcription\|inhibiting element (silencer) exists between -552 to -1344. 展开更多
关键词 SNC6 gene genomic structure 5'\|flanking region PROMOTER luciferase assay
在线阅读 下载PDF
Snapshot of Structural Variations in the Tibetan Wild Boar Genome at Single-Nucleotide Resolution 被引量:1
19
作者 Lei Chen Long Jin +9 位作者 Mingzhou Li Shilin Tian Tiandong Che Qianzi Tang Jing Lan Zhi Jiang Ruiqiang Li Yiren Gu Xuewei Li Jinyong Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2014年第12期653-657,共5页
Genomic structural variations (SVs), particularly insertions, deletions and inversions, can contribute to the heterogeneity of millions of nucleotides within a genome, and are likely to make an important contributio... Genomic structural variations (SVs), particularly insertions, deletions and inversions, can contribute to the heterogeneity of millions of nucleotides within a genome, and are likely to make an important contribution to biological diversity and phenotypic variation (Alkan et al., 2011; Bickhart and Liu, 2014). With the rapid development of the next-generation sequencing technologies and the new assembly methodolo- gies, the multiple de novo assemblies of genomes within a species allow researchers to explore more detailed SV maps (Li et al., 2011). Compared with the traditional read depth algorithm using the whole-genome resequencing approach and array-based technologies (Baker, 2012; Wang et al., 2012; 展开更多
关键词 gene Snapshot of structural Variations in the Tibetan Wild Boar genome at Single-Nucleotide Resolution
原文传递
上一页 1 2 36 下一页 到第
使用帮助 返回顶部