期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Application and Prospects of CRISPR/Cas9 Genome Editing Technology in the Genetic Improvement of Fruit Trees
1
作者 Xiaoqi CHEN Shaoping WU 《Asian Agricultural Research》 2025年第6期40-46,共7页
CRISPR/Cas9 technology, a revolutionary gene-editing tool, has rapidly garnered attention in plant science owing to its simplicity, high editing efficiency, and cost-effectiveness. Besides, it offers unprecedented pre... CRISPR/Cas9 technology, a revolutionary gene-editing tool, has rapidly garnered attention in plant science owing to its simplicity, high editing efficiency, and cost-effectiveness. Besides, it offers unprecedented precision and efficiency in the genetic improvement of fruit trees. To date, this technology has been widely utilized to enhance fruit quality, improve stress resistance, and mediate growth and development. These applications demonstrate its immense potential in fruit tree breeding. Looking ahead, advancements in editing efficiency, expanded application scopes, comprehensive safety assessments, and improved regulatory frameworks are expected to further broaden the role of CRISPR/Cas9 in fruit tree breeding, thereby driving the fruit tree industry toward higher yield, superior quality, enhanced stress resilience, higher efficiency, and contributing to global food security and sustainable agricultural development. This article outlines the fundamental principles of CRISPR/Cas9 gene editing technology, its applications in plants (including fruit trees), and its pivotal role in genetic improvement and germplasm innovation. 展开更多
关键词 CRISPR/Cas9 genome editing Fruit trees Genetic improvement Germplasm enhancement
在线阅读 下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants 被引量:1
2
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
在线阅读 下载PDF
Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae
3
作者 ANJANI DEVI CHINTAGUNTA SAMUDRALA PRASHANT JEEVAN KUMAR NUNE SATYA SAMPATH KUMAR 《BIOCELL》 SCIE 2024年第8期1181-1195,共15页
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh... Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis. 展开更多
关键词 Oleaginous microalgae BIODIESEL TAG synthesis Metabolic engineering genome editing
在线阅读 下载PDF
Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research 被引量:3
4
作者 Zhen-Hua Li Jun Wang +2 位作者 Jing-Ping Xu Jian Wang Xiao Yang 《Military Medical Research》 SCIE CAS CSCD 2023年第6期862-880,共19页
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-bas... The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed. 展开更多
关键词 genome editing CRISPR-Cas system Base editing Prime editing Transposon-associated genome editing Cardiovascular disease Heart Blood vessel Gene therapy
原文传递
A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice 被引量:29
5
作者 Chun Wang Lan Shen +2 位作者 Yaping Fu Changjie Yan Kejian Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第12期703-706,共4页
Generating mutants bearing multiple gene modifications is essential for determining the functions of gene family members with redundant functions, or for analyzing epistatic re- lationships in genetic pathways. Using ... Generating mutants bearing multiple gene modifications is essential for determining the functions of gene family members with redundant functions, or for analyzing epistatic re- lationships in genetic pathways. Using conventional methods, mutants with multiple gene mutations are generated by several rounds of intercrossing plants carrying a single mutation and identification of the offspring. This process is both timeconsuming and labor-intensive. Moreover, if the genes of interest are closely linked, multiple mutations can not be generated (Wijnker and de Jong, 2008). 展开更多
关键词 A Simple CRISPR/Cas9 System for Multiplex genome editing in Rice PDS Kpn RNA gene PCR
原文传递
High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing 被引量:23
6
作者 Xiufeng Li Wenjia Zhou +7 位作者 Yuekun Ren Xiaojie Tian Tianxiao Lv Zhenyu Wang Jun Fang Chengcai Chu Jie Yang Qingyun Bu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第3期175-178,共4页
Rice is a staple food for more than half of the human population.It has been estimated that by 2030,40%more rice needs to be produced in order to meet the growing demand(Khush,2005).One of the strategies to improve ... Rice is a staple food for more than half of the human population.It has been estimated that by 2030,40%more rice needs to be produced in order to meet the growing demand(Khush,2005).One of the strategies to improve rice productivity is to enlarge rice growth areas, such as the northward expansion of the growth region in Heilongjiang Province, the northernmost region of China (Li et al., 2015). However, the northward cultivation is accompanied with daylength extension and temperature decrease, which are unfavor- able for rice, a tropical short-day plant, to complete flowering and seed setting. Thus, the need for early-maturing rice cultivars with extremely low photoperiod sensitivity is urgent. 展开更多
关键词 In THAN High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing
原文传递
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement 被引量:12
7
作者 Chao LI Eleanor BRANT +1 位作者 Hikmet BUDAK Baohong ZHANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第4期253-284,共32页
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010 s,clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)has ra... Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010 s,clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)has rapidly been developed into a robust,multifunctional genome editing tool with many uses.Following the discovery of the initial CRISPR/Cas-based system,the technology has been advanced to facilitate a multitude of different functions.These include development as a base editor,prime editor,epigenetic editor,and CRISPR interference(CRISPRi)and CRISPR activator(CRISPRa)gene regulators.It can also be used for chromatin and RNA targeting and imaging.Its applications have proved revolutionary across numerous biological fields,especially in biomedical and agricultural improvement.As a diagnostic tool,CRISPR has been developed to aid the detection and screening of both human and plant diseases,and has even been applied during the current coronavirus disease 2019(COVID-19)pandemic.CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases,including cancers,and has aided drug development.In terms of agricultural breeding,precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins,starch,oil,and other functional components for crop improvement.Adding to this,CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators.Looking to the future,increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology.This review provides an in-depth overview of current CRISPR development,including the advantages and disadvantages of the technology,recent applications,and future considerations. 展开更多
关键词 genome editing Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas) Coronavirus disease 2019(COVID-19) Cancer Precision breeding Crop improvement Gene knock-out/in Gene repair/replacement
原文传递
A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield 被引量:8
8
作者 Wenshu Wang Weipeng Wang +11 位作者 Yanlin Pan Chao Tan Hongjing Li Ya Chen Xingdan Liu Jing Wei Nian Xu Yu Han Han Gu Rongjian Ye Qi Ding Chonglie Ma 《The Crop Journal》 SCIE CSCD 2022年第4期1207-1212,共6页
Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the... Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the miR396 recognition site of the rice GS2 gene,which encodes growth-regulating factor 4(OsGRF4)and regulates multiple agronomic traits including grain size,grain quality,nitrogen use efficiency,abiotic stress response,and seed shattering.In contrast to most previous genome editing efforts in which indel mutations were chosen to obtain null mutants,a mutant named GS2^(E) carrying an in-frame 6-bp deletion and 1-bp substitution within the miR396-targeted sequence was identified.GS2^(E) plants showed increased expression of GS2 in consistent with impaired repression by miR396.As expected,the gain-of-function GS2^(E) mutant exhibited multiple beneficial traits including increased grain size and yield and bigger grain length/width ratio.Thousand grain weight and grain yield per plant of GS2^(E) plants were increased by 23.5%and 10.4%,respectively.These improved traits were passed to hybrids in a semidominant way,suggesting that the new GS2^(E) allele has great potential in rice improvement.Taken together,we report new GS2 germplasm and describe a novel gene-editing strategy that can be widely employed to improve grain size and yield in rice.This trait-improvement strategy could be applied to other genes containing miRNA target sites,in particular the conserved miR396-GRF/GIF module that governs plant growth,development and environmental response. 展开更多
关键词 genome editing GS2/GRF4 Grain size YIELD RICE
在线阅读 下载PDF
Systematic identification of endogenous RNA polymeraseⅢpromoters for efficient RNA guidebased genome editing technologies in maize 被引量:9
9
作者 Xiantao Qi Le Dong +5 位作者 Changlin Liu Long Mao Fang Liu Xin Zhang Beijiu Cheng Chuanxiao Xie 《The Crop Journal》 SCIE CAS CSCD 2018年第3期314-320,共7页
Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic L... Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic Light Reporter(TLR) system, which is designated as the same colors as traffic lights such as green, red and yellow were produced in cells. The TLR can be readily used in maize mesophyll protoplast for a quick test of promoter activity. The TLR assay indicates the variation in transcription activities of the seven Pol III promoters, from 3.4%(U6-1) to over 21.0%(U6-6). The U6-2 promoter, which was constructed to drive sg RNA expression targeting the Zm Wx1 gene, yielded mutation efficiencies ranging from 48.5% to 97.1%. Based on the reported and unpublished data, the in vitro TLR assay results were confirmed to be a readily system and may be extended to other plant species amenable to efficient genome editing via CRISPR/Cas. Our efforts provide an efficient method of identifying native Pol III-recognized promoters for RNA guide-based genome-editing systems in maize. 展开更多
关键词 CRISPR/Cas genome editing RNA polymerase III promoters MAIZE
在线阅读 下载PDF
Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities 被引量:10
10
作者 Yating Chen Wenwen Mao +3 位作者 Ting Liu Qianqian Feng Li Li Bingbing Li 《Horticultural Plant Journal》 SCIE 2020年第6期372-384,共13页
The quality traits of horticultural crops,including the accumulation of nutrients and flavor substances,morphology,and texture,affect the palatability and nutritional value.For many years,efforts have been made to imp... The quality traits of horticultural crops,including the accumulation of nutrients and flavor substances,morphology,and texture,affect the palatability and nutritional value.For many years,efforts have been made to improve the quality of horticultural crops.The recent establishment of gene editing technology,with its potential applications in horticultural crops,provides a strategy for achieving this goal in a rapid and efficient manner.Here,we summarize research efforts aimed at improving horticultural crop quality through genome editing.We describe specific genome editing systems that have been used and traits that have been targeted in these efforts.Additionally,we discuss limiting factors and future perspectives of genome editing technology in improving horticultural crop qualities in both research and plant breeding.In summary,genome editing technology is emerging as a powerful tool for efficiently and rapidly improving horticultural crop quality,and we believe that the cautious application of genome editing in horticultural crops will generate new germplasms with improved quality in the near future. 展开更多
关键词 genome editing CRISPR/Cas9 Horticultural crop Quality improvement
在线阅读 下载PDF
Genome editing in plants with MAD7 nuclease 被引量:5
11
作者 Qiupeng Lin Zixu Zhu +8 位作者 Guanwen Liu Chao Sun Dexing Lin Chenxiao Xue Shengnan Li Dandan Zhang Caixia Gao Yanpeng Wang Jin-Long Qiu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第6期444-451,共8页
MAD7 is an engineered nuclease of the Class 2 type V-A CRISPR-Cas(Cas12 a/Cpf1)family with a low level of homology to canonical Cas12 a nucleases.It has been publicly released as a royalty-free nuclease for both acade... MAD7 is an engineered nuclease of the Class 2 type V-A CRISPR-Cas(Cas12 a/Cpf1)family with a low level of homology to canonical Cas12 a nucleases.It has been publicly released as a royalty-free nuclease for both academic and commercial use.Here,we demonstrate that the CRISPR-MAD7 system can be used for genome editing and recognizes T-rich PAM sequences(YTTN)in plants.Its editing efficiency in rice and wheat is comparable to that of the widely used CRISPR-Lb Cas12 a system.We develop two variants,MAD7-RR and MAD7-RVR that increase the target range of MAD7,as well as an M-AFID(a MAD7-APOBEC fusion-induced deletion)system that creates predictable deletions from 50-deaminated Cs to the MAD7-cleavage site.Moreover,we show that MAD7 can be used for multiplex gene editing and that it is effective in generating indels when combined with other CRISPR RNA orthologs.Using the CRISPR-MAD7 system,we have obtained regenerated mutant rice and wheat plants with up to 65.6%efficiency. 展开更多
关键词 MAD7 nuclease CRISPR-Cas12a Plant genome editing Royalty-free Commercial use
原文传递
A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila 被引量:4
12
作者 Jiang Xu Xingjie Ren +5 位作者 Jin Sun Xia Wang Huan-Huan Qiao Bo-Wen Xu Lu-Ping Liu Jian-Quan Ni 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第4期141-149,共9页
The last couple of years have witnessed an explosion in development of CRISPR-based genome editing technologies in cell lines as well as in model organisms. In this review, we focus on the applications of this popular... The last couple of years have witnessed an explosion in development of CRISPR-based genome editing technologies in cell lines as well as in model organisms. In this review, we focus on the applications of this popular system in Drosophila. We discuss the effectiveness of the CRISPR/Cas9 systems in terms of delivery, mutagenesis detection, parameters affecting efficiency, and off-target issues, with an emphasis on how to apply this powerful tool to characterize gene functions. 展开更多
关键词 CRISPR genome editing DROSOPHILA Cas9 sgRNA Off-target
原文传递
Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing 被引量:15
13
作者 Yubing He Tao Zhang +5 位作者 Ning Yang Meilian Xu Lang Yan Lihao Wang Rongchen Wang Yunde Zhao 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第9期469-472,共4页
Development of tools for targeted modifications of specific DNA sequences in plants is of great importance to basic plant biology research as well as crop improvement.The ability to cut DNA at specific locations in th... Development of tools for targeted modifications of specific DNA sequences in plants is of great importance to basic plant biology research as well as crop improvement.The ability to cut DNA at specific locations in the genome to generate doublestrand breaks(DSBs)in vivo is a prerequisite for any genome editing efforts. 展开更多
关键词 RGR Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing
原文传递
In vivo genome editing thrives with diversified CRISPR technologies 被引量:5
14
作者 Xun Ma Avery Sum-Yu Wong +3 位作者 Hei-Yin Tam Samuel Yung-Kin Tsui Dittman Lai-Shun Chung Bo Feng 《Zoological Research》 SCIE CAS CSCD 2018年第2期58-71,共14页
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site- specific genome editing and has revolutionized biomedical research due to it... Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site- specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research. 展开更多
关键词 CRISPR/Cas9 genome editing Animal models
暂未订购
An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts 被引量:4
15
作者 Wenhui Yang Jiaqin Ren +6 位作者 Wanrong Liu Dan Liu Kaidong Xie Fei Zhang Pengwei Wang Wenwu Guo Xiaomeng Wu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期425-436,共12页
Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression sys... Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol(PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNAgRNA(inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors. 展开更多
关键词 CITRUS Callus protoplast Transient transfection Subcellular localization genome editing
在线阅读 下载PDF
Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice 被引量:52
16
作者 Rongfang Xu Yachun Yang +5 位作者 Ruiying Qin Hao Li Chunhong Qiu Li Li Pengcheng Wei Jianbo Yang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第8期529-532,共4页
Most of the important agronomic traits in crop plants, such as yield, quality and stress response, are quantitative and jointly controlled by many genomic loci or major genes. Improving these complex traits depends on... Most of the important agronomic traits in crop plants, such as yield, quality and stress response, are quantitative and jointly controlled by many genomic loci or major genes. Improving these complex traits depends on the combination of beneficial alleles at the quantitative trait loci (QTLs). However, the conventional cross breeding method is extremely time-consuming and laborious for pyramiding multiple QTLs. In certain cases, this approach might be technically difficult because of close linkage between genes separately responsible for desirable and undesirable traits. 展开更多
关键词 Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice
原文传递
Target binding and residence:a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing 被引量:3
17
作者 Yili FENG Sicheng LIU +1 位作者 Ruodan CHEN Anyong XIE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第1期73-86,共14页
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)is widely used for targeted genomic and epigenomic modifications and imaging in cells and organisms,and holds trem... The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)is widely used for targeted genomic and epigenomic modifications and imaging in cells and organisms,and holds tremendous promise in clinical applications.The efficiency and accuracy of the technology are partly determined by the target binding affinity and residence time of Cas9-single-guide RNA(sgRNA)at a given site.However,little attention has been paid to the effect of target binding affinity and residence duration on the repair of Cas9-induced DNA double-strand breaks(DSBs).We propose that the choice of DSB repair pathway may be altered by variation in the binding affinity and residence duration of Cas9-sgRNA at the cleaved target,contributing to significantly heterogeneous mutations in CRISPR/Cas9 genome editing.Here,we discuss the effect of Cas9-sgRNA target binding and residence on the choice of DSB repair pathway in CRISPR/Cas9 genome editing,and the opportunity this presents to optimize Cas9-based technology. 展开更多
关键词 CRISPR/Cas9 genome editing Double-strand break(DSB)repair pathway choice Target binding affinity Target residence
原文传递
The Application of CRISPR-Cas9 Genome Editing in Caenorhabditis elegans 被引量:2
18
作者 Suhong Xu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第8期413-421,共9页
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most ... Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for genetic analysis, and the application of this novel genome editing technique to this organism promises to revolutionize analysis of gene function in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-joining mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods used to deliver the Cas9 endonuclease and the efficiency of the single guide RNAs. CRISPR-Cas9-mediated editing appears to be highly specific in C. elegans, with no reported off-target effects. In this review, 1 briefly summarize recent progress in CRISPR-Cas9-based genome editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discuss potential future appli- cations of this technique. 展开更多
关键词 genome editing CRISPR: Cas9 Non-homologous end-joining (NHEJ) Homology-directed repair (HDR) Somatic mutation C. elegans
原文传递
Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon 被引量:10
19
作者 Feiyue Cheng Luyao Gong +4 位作者 Dahe Zhao Haibo Yang Jian Zhou Ming Li Hua Xiang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第11期541-548,共8页
Research on CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and ha... Research on CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting miniCRISPR and a 600-800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy. 展开更多
关键词 Haloarcula hispanica CRISPR-Cas genome editing Polyploid
原文传递
Genome editing technology and application in soybean improvement 被引量:7
20
作者 Aili Bao Chanjuan Zhang +3 位作者 Yi Huang Haifeng Chen Xinan Zhou Dong Cao 《Oil Crop Science》 2020年第1期31-40,共10页
Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing env... Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing environment,soybean genetic improvement needs to be accelerated.In recent years,the rapid developed genome editing technologies,such as zinc finger nuclease(ZFNs),transcription activator-like effector nucleases(TALENs),and clustered regularly interspaced short palindromic repeats/CRISPR associated protein(CRISPR/Cas),have shown broad application prospects in gene function research and improvement of important agronomic traits in many crops,and has also brought opportunities for soybean breeding.Here we systematically reviewed recent advances in genome editing technology.We also summarized the significances,current applications,challenges and future perspectives in soybean genome editing,which could provide references for exerting the feature and advantage of this technology to better soybean improvement. 展开更多
关键词 genome editing SOYBEAN ZFNs TALENs CRISPR/Cas9 CRISPR/Cas12a Base editing
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部