期刊文献+
共找到9,628篇文章
< 1 2 250 >
每页显示 20 50 100
Actuator Fault Diagnosis of 3-PR(P)S Parallel Robot Based on Dung Beetle Optimization-Back Propagation Neural Network
1
作者 Junjie Huang Chenhao Huangfu +3 位作者 Qinlei Zhang Shikai Li Yonggang Yan Jiangkun Cai 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期91-100,共10页
Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying t... Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot. 展开更多
关键词 ACTUATOR back propagation neural network Dung Beetle algorithm fault diagnosis 3-PR(P)S parallel robot
在线阅读 下载PDF
Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China 被引量:5
2
作者 Lin Chen Weibing Lin +3 位作者 Ping Chen Shu Jiang Lu Liu Haiyan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期828-838,共11页
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import... A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area. 展开更多
关键词 porosity prediction well logs back propagation neural network genetic algorithm Ordos Basin Yanchang Formation
原文传递
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
3
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
4
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:14
5
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
6
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Using genetic algorithm to learn neural network identifier for modeling gyro startup drift rate 被引量:1
7
作者 徐丽娜 李琳琳 邓正隆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第3期70-74,共5页
Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural ... Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence. 展开更多
关键词 genetic algorithm neural network system identification GYRO nonlinear systems
在线阅读 下载PDF
Projected change in precipitation forms in the Chinese Tianshan Mountains based on the Back Propagation Neural Network Model 被引量:1
8
作者 REN Rui LI Xue-mei +2 位作者 LI Zhen LI Lan-hai HUANG Yi-yu 《Journal of Mountain Science》 SCIE CSCD 2022年第3期689-703,共15页
In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional ru... In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology. 展开更多
关键词 Global warming Tianshan Mountains region Precipitation forms CMIP5 models back propagation neural network model
原文传递
A Review of an Expert System Design for Crude Oil Distillation Column Using the Neural Networks Model and Process Optimization and Control Using Genetic Algorithm Framework 被引量:1
9
作者 Lekan Taofeek Popoola Gutti Babagana Alfred Akpoveta Susu 《Advances in Chemical Engineering and Science》 2013年第2期164-170,共7页
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (... This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method. 展开更多
关键词 Artificial neural network CRUDE Oil Distillation Column genetic algorithm FRAMEWORK Sigmoidal Transfer Function back-propagation algorithm
在线阅读 下载PDF
Applying Neural Network withGenetic Algorithm and FuzzySelection Models to Select Equipmentsfor Fully-Mechanized Coal Mining
10
作者 王新宇 吴瑞明 冯春花 《Journal of China University of Mining and Technology》 2004年第2期147-151,共5页
According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we c... According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining. 展开更多
关键词 genetic algorithm artificial neural network FUZZY SELECTION SELECTION of equipment combination
在线阅读 下载PDF
Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model
11
作者 GUO Qiang,LUO Chang-shou,WEI Qing-feng Institute of Information on Science and Technology of Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China 《Asian Agricultural Research》 2011年第5期148-150,共3页
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm ... Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model. 展开更多
关键词 genetic algorithm neural network VEGETABLES PRICE
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
12
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
Evolving Neural Networks Using an Improved Genetic Algorithm 被引量:2
13
作者 温秀兰 宋爱国 +1 位作者 段江海 王一清 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期367-369,共3页
A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen... A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove... 展开更多
关键词 genetic algorithms neural network nonlinear forecasting
在线阅读 下载PDF
NEURAL NETWORK PREDICTIVE CONTROL WITH HIERARCHICAL GENETIC ALGORITHM
14
作者 刘宝坤 王慧 李光泉 《Transactions of Tianjin University》 EI CAS 1998年第2期48-50,共3页
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da... A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness. 展开更多
关键词 neural networks(NN) predictive control hierarchical genetic algorithms nonlinear system
在线阅读 下载PDF
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
15
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network COOPERATIVE genetic algorithm knowledge transmission
在线阅读 下载PDF
A method for predicting random vibration response of train-track-bridge system based on GA-BP neural network
16
作者 Jianfeng Mao Yun Zhang +2 位作者 Li Zheng Mansoor Khan Zhiwu Yu 《High-Speed Railway》 2025年第4期305-317,共13页
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw... To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems. 展开更多
关键词 Train-track-bridge system genetic algorithm BP neural network Random response prediction Random parameters
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
17
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
18
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants Convolutional neural networks Data augmentation Optimization algorithms model evaluation methods Deep Learning
原文传递
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
19
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
20
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm BP neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部