Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Further...Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are prese...By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.展开更多
In virtue of the notion of likelihood ratio and moment generating function, the limit properties of the sequences of absolutely continuous random variables are studied, and a class of strong limit theorems represented...In virtue of the notion of likelihood ratio and moment generating function, the limit properties of the sequences of absolutely continuous random variables are studied, and a class of strong limit theorems represented by inequalities with random bounds are obtained.展开更多
This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric ...This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric functions have been presented.In virtue of quantum fields,we derive a series of infinite order nonlinear integrable equations,namely,universal character hierarchy,symplectic KP hierarchy and symplectic universal character hierarchy,respectively.In addition,the solutions of these integrable systems have been discussed.展开更多
In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characteri...In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characterize the uncertainty caused by various factors. A modified Markov model is proposed to obtain the state probabilities of components at any given moment and subsequently the mass function is used to represent the precise belief degree of state probabilities. Based on the primary studies of universal generating function(UGF)method, a belief UGF(BUGF) method is utilized to analyze the reliability and the uncertainty of excavator rectifier feedback system. This paper provides an available method to evaluate the reliability of multi-state systems(MSSs) with interval state performances and state probabilities, and also avoid the interval expansion problem.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
For the sequences satisfying the recurrence relation of the second order,the generating functions for the products of the powers of these sequences are established.This study was from Carlita and Riordan who began a s...For the sequences satisfying the recurrence relation of the second order,the generating functions for the products of the powers of these sequences are established.This study was from Carlita and Riordan who began a study on closed form of generating functions for powers of second-order recurrence sequences.This investigation was completed by Stnica.Inspired by the recent work of Istva'n about the non-closed generating functions of the products of the powers of the second-order sequences,the authors give several extensions of Istva'n's results in this paper.展开更多
At present, universal generating function(UGF) is a reliability evaluation technique which holds the bare-looking and easily program-realized merits in multi-state system. Thus, it is meaningful to apply this method t...At present, universal generating function(UGF) is a reliability evaluation technique which holds the bare-looking and easily program-realized merits in multi-state system. Thus, it is meaningful to apply this method to an actual industry system. Compressor systems in natural gas pipelines are series-parallel multi-state systems,where the compressor units in each compressor station work in a parallel way and these pressure-boosting stations in the pipeline are series connected. Considering the characteristic of gas pipelines, this paper develops two different UGFs to evaluate the system reliability. One(Model 1) establishes a system model from every compressor unit while the other(Model 2) considers the whole system as a combination of multi-state components. Besides, all the parameters of "weight" in UGFs are obtained from thermal-hydraulic models based on the actual engineering and"probability" from Monte Carlo simulation. The results show that the system reliabilities calculated by different UGFs are approximately equal. In addition, the demand of gas and the gas pipeline transportation system show a reverse trend. Because the number of parameters needed in Model 2 is far less than that needed in Model 1,Model 2 is simpler programming and faster solved.展开更多
A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
The main aim of this article is to obtain certain Laurent type hypergeometric generating relations. Using a general double series identity, Laurent type generating functions(in terms of Kampede Feriet double hypergeom...The main aim of this article is to obtain certain Laurent type hypergeometric generating relations. Using a general double series identity, Laurent type generating functions(in terms of Kampede Feriet double hypergeometric function) are derived. Some known results obtained by the method of Lie groups and Lie algebras, are also modified here as special cases.展开更多
By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of t...By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functio...This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functions of them by operator calculus built from the derivative and the positional operators.展开更多
The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group...The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.展开更多
New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates beca...New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates because of harsh weather,significantly affecting the maintenance procedures and reliability.Different types of failure rates of the wind turbine(WT)and wave energy converter(WEC),e.g.,the degradation and failure rates during regular wind speed fluctuation,the degradation and failure rates during intense wind speed fluctuation are considered.By incorporating both WT and WEC,the HWWPG system is designed to enhance the overall amount of electrical energy produced by the system over a given period under varying weather conditions.The universal generating function technique is used to calculate the HWWPG system dependability measures in a structured and efficient manner.This research highlights that intense weather conditions increase the failure rates of both WT and WEC,resulting in higher maintenance costs and more frequent downtimes,thus impacting the HWWPG system’s reliability.Although the HWWPG system can meet the energy demands in the presence of high failure rates,the reliance of the hybrid system on both WT and WEC helps maintain a relatively stable demand satisfaction during periods of high energy demand despite adverse weather conditions.To confirm the added value and applicability of the developed model,a case study of an offshore hybrid platform is conducted.The findings underscore the system’s robustness in maintaining energy production under varied weather conditions,though higher failure rates and maintenance costs arise in intense scenarios.展开更多
We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functi...We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functions are derived.Furthermore,we introduce two integrable systems known as the generalized UC(GUC)hierarchy and the generalized Btype UC(GBUC)hierarchy satisfied by the generalized universal character and the generalized B-type universal character,respectively.Based on infinite sequences of complex numbers,we further establish the multiparameter generalized universal character and the multiparameter generalized B-type universal character,which have been proved to be solutions of the GUC hierarchy and the GBUC hierarchy,respectively.展开更多
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金supported by NSFC(11471260)the Foundation of Shannxi Education Committee(12JK0850)
文摘Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)the Natural Science Foundation of Jiangsu Higher Education Institution of China(Grant No.14KJD140001)
文摘By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.
基金Supported by the National Nature Science Foundation of China (Grant No. 11101014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20101103120016)+4 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (Grant No. PHR20110822)Training Programme Foundation for the Beijing Municipal Excellent Talents (Grant No. 2010D005015000002)the Fundamental Research Foundation of Beijing University of Technology (Grant No. X4006013201101)Education Department Science Project of Hebei Province (Grant No. Z2010297)Science Project of Shijiazhuang University of Economics (Grant No. XN0912)
文摘In virtue of the notion of likelihood ratio and moment generating function, the limit properties of the sequences of absolutely continuous random variables are studied, and a class of strong limit theorems represented by inequalities with random bounds are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965014 and 12061051)the National Science Foundation of Qinghai Province,China(Grant No.2021-ZJ-708)。
文摘This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric functions have been presented.In virtue of quantum fields,we derive a series of infinite order nonlinear integrable equations,namely,universal character hierarchy,symplectic KP hierarchy and symplectic universal character hierarchy,respectively.In addition,the solutions of these integrable systems have been discussed.
基金the National High Technology Research and Development Program(863)of China(No.2012AA062001)
文摘In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characterize the uncertainty caused by various factors. A modified Markov model is proposed to obtain the state probabilities of components at any given moment and subsequently the mass function is used to represent the precise belief degree of state probabilities. Based on the primary studies of universal generating function(UGF)method, a belief UGF(BUGF) method is utilized to analyze the reliability and the uncertainty of excavator rectifier feedback system. This paper provides an available method to evaluate the reliability of multi-state systems(MSSs) with interval state performances and state probabilities, and also avoid the interval expansion problem.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30104)
文摘For the sequences satisfying the recurrence relation of the second order,the generating functions for the products of the powers of these sequences are established.This study was from Carlita and Riordan who began a study on closed form of generating functions for powers of second-order recurrence sequences.This investigation was completed by Stnica.Inspired by the recent work of Istva'n about the non-closed generating functions of the products of the powers of the second-order sequences,the authors give several extensions of Istva'n's results in this paper.
基金the National Natural Science Foundation of China(No.51504271)the National Science & Technology Specific Project(No.2016ZX05066005-001)
文摘At present, universal generating function(UGF) is a reliability evaluation technique which holds the bare-looking and easily program-realized merits in multi-state system. Thus, it is meaningful to apply this method to an actual industry system. Compressor systems in natural gas pipelines are series-parallel multi-state systems,where the compressor units in each compressor station work in a parallel way and these pressure-boosting stations in the pipeline are series connected. Considering the characteristic of gas pipelines, this paper develops two different UGFs to evaluate the system reliability. One(Model 1) establishes a system model from every compressor unit while the other(Model 2) considers the whole system as a combination of multi-state components. Besides, all the parameters of "weight" in UGFs are obtained from thermal-hydraulic models based on the actual engineering and"probability" from Monte Carlo simulation. The results show that the system reliabilities calculated by different UGFs are approximately equal. In addition, the demand of gas and the gas pipeline transportation system show a reverse trend. Because the number of parameters needed in Model 2 is far less than that needed in Model 1,Model 2 is simpler programming and faster solved.
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
基金Dr.D.S.Kothari Post Doctoral Fellowship(Award letter No.F.4-2/2006(BSR)/MA/17-18/0025)awarded to Dr.Mahvish Ali by the University Grants CommissionGovernment of India,New Delhi。
文摘The main aim of this article is to obtain certain Laurent type hypergeometric generating relations. Using a general double series identity, Laurent type generating functions(in terms of Kampede Feriet double hypergeometric function) are derived. Some known results obtained by the method of Lie groups and Lie algebras, are also modified here as special cases.
基金Project supported by the National Natural Science Foundation of China(Grant No.10671156)the Natural Science Foundation of Shaanxi Province of China(Grant No.SJ08A05)
文摘By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
文摘This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functions of them by operator calculus built from the derivative and the positional operators.
文摘The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.
文摘New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates because of harsh weather,significantly affecting the maintenance procedures and reliability.Different types of failure rates of the wind turbine(WT)and wave energy converter(WEC),e.g.,the degradation and failure rates during regular wind speed fluctuation,the degradation and failure rates during intense wind speed fluctuation are considered.By incorporating both WT and WEC,the HWWPG system is designed to enhance the overall amount of electrical energy produced by the system over a given period under varying weather conditions.The universal generating function technique is used to calculate the HWWPG system dependability measures in a structured and efficient manner.This research highlights that intense weather conditions increase the failure rates of both WT and WEC,resulting in higher maintenance costs and more frequent downtimes,thus impacting the HWWPG system’s reliability.Although the HWWPG system can meet the energy demands in the presence of high failure rates,the reliance of the hybrid system on both WT and WEC helps maintain a relatively stable demand satisfaction during periods of high energy demand despite adverse weather conditions.To confirm the added value and applicability of the developed model,a case study of an offshore hybrid platform is conducted.The findings underscore the system’s robustness in maintaining energy production under varied weather conditions,though higher failure rates and maintenance costs arise in intense scenarios.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12461048 and 12061051)the Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2023MS01003)+2 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT23096)the financial support from the Program of China Scholarships Council(Grant No.202306810054)for one year study at the University of Leedsthe support of Professor Ke Wu and Professor Weizhong Zhao at Capital Normal University,China。
文摘We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functions are derived.Furthermore,we introduce two integrable systems known as the generalized UC(GUC)hierarchy and the generalized Btype UC(GBUC)hierarchy satisfied by the generalized universal character and the generalized B-type universal character,respectively.Based on infinite sequences of complex numbers,we further establish the multiparameter generalized universal character and the multiparameter generalized B-type universal character,which have been proved to be solutions of the GUC hierarchy and the GBUC hierarchy,respectively.