期刊文献+
共找到4,886篇文章
< 1 2 245 >
每页显示 20 50 100
Generalized spatial modulation detector assisted by reconfigurable intelligent surface based on deep learning
1
作者 Chiya Zhang Qinggeng Huang +2 位作者 Chunlong He Gaojie Chen Xingquan Li 《Digital Communications and Networks》 2025年第4期1172-1179,共8页
Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This pape... Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This paper proposes an architecture by combining RIS with Generalized Spatial Modulation(GSM)and then presents a Multi-Residual Deep Neural Network(MR-DNN)scheme,where the active antennas and their transmitted constellation symbols are detected by sub-DNNs in the detection block.Simulation results demonstrate that the proposed MR-DNN detection algorithm performs considerably better than the traditional Zero-Forcing(ZF)and the Minimum Mean Squared Error(MMSE)detection algorithms in terms of Bit Error Rate(BER).Moreover,the MR-DNN detection algorithm has less time complexity than the traditional detection algorithms. 展开更多
关键词 generalized spatial modulation Multiple input multiple output Reconfigurable intelligent surface Deep learning
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
2
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Generalized projective synchronization of chaotic systems via adaptive learning control 被引量:19
3
作者 孙云平 李俊民 +1 位作者 王江安 王辉林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期119-126,共8页
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski... In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. 展开更多
关键词 generalized projective synchronisation chaotic systems adaptive learning control Lyapunov--Krasovskii functional
原文传递
Optimization Scheduling of Hydrogen-Coupled Electro-Heat-Gas Integrated Energy System Based on Generative Adversarial Imitation Learning
4
作者 Baiyue Song Chenxi Zhang +1 位作者 Wei Zhang Leiyu Wan 《Energy Engineering》 2025年第12期4919-4945,共27页
Hydrogen energy is a crucial support for China’s low-carbon energy transition.With the large-scale integration of renewable energy,the combination of hydrogen and integrated energy systems has become one of the most ... Hydrogen energy is a crucial support for China’s low-carbon energy transition.With the large-scale integration of renewable energy,the combination of hydrogen and integrated energy systems has become one of the most promising directions of development.This paper proposes an optimized schedulingmodel for a hydrogen-coupled electro-heat-gas integrated energy system(HCEHG-IES)using generative adversarial imitation learning(GAIL).The model aims to enhance renewable-energy absorption,reduce carbon emissions,and improve grid-regulation flexibility.First,the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process(MDP).To overcome the limitations of conventional deep reinforcement learning algorithms—including long optimization time,slow convergence,and subjective reward design—this study augments the PPO algorithm by incorporating a discriminator network and expert data.The newly developed algorithm,termed GAIL,enables the agent to perform imitation learning from expert data.Based on this model,dynamic scheduling decisions are made in continuous state and action spaces,generating optimal energy-allocation and management schemes.Simulation results indicate that,compared with traditional reinforcement-learning algorithms,the proposed algorithmoffers better economic performance.Guided by expert data,the agent avoids blind optimization,shortens the offline training time,and improves convergence performance.In the online phase,the algorithm enables flexible energy utilization,thereby promoting renewable-energy absorption and reducing carbon emissions. 展开更多
关键词 Hydrogen energy optimization dispatch generative adversarial imitation learning proximal policy optimization imitation learning renewable energy
在线阅读 下载PDF
Exploration of a New Educational Model Based on Generative AIEmpowered Interdisciplinary Project-Based Learning
5
作者 Qijun Xu Fengtao Hao 《Journal of Educational Theory and Management》 2025年第1期15-18,共4页
This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curric... This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation. 展开更多
关键词 generative AI Project-Based learning Educational Model
在线阅读 下载PDF
Generated Preserved Adversarial Federated Learning for Enhanced Image Analysis (GPAF)
6
作者 Sanaa Lakrouni Slimane Bah Marouane Sebgui 《Computers, Materials & Continua》 2025年第12期5555-5569,共15页
Federated Learning(FL)has recently emerged as a promising paradigm that enables medical institutions to collaboratively train robust models without centralizing sensitive patient information.Data collected from differ... Federated Learning(FL)has recently emerged as a promising paradigm that enables medical institutions to collaboratively train robust models without centralizing sensitive patient information.Data collected from different institutions represent distinct source domains.Consequently,discrepancies in feature distributions can significantly hinder a model’s generalization to unseen domains.While domain generalization(DG)methods have been proposed to address this challenge,many may compromise data privacy in FL by requiring clients to transmit their local feature representations to the server.Furthermore,existing adversarial training methods,commonly used to align marginal feature distributions,fail to ensure the consistency of conditional distributions.This consistency is often critical for accurate predictions in unseen domains.To address these limitations,we propose GPAF,a privacy-preserving federated learning(FL)framework that mitigates both domain and label shifts in healthcare applications.GPAF aligns conditional distributions across clients in the latent space and restricts communication to model parameters.This design preserves class semantics,enhances privacy,and improves communication efficiency.At the server,a global generator learns a conditional feature distribution from clients’feedback.During local training,each client minimizes an adversarial loss to align its local conditional distribution with the global distribution,enabling the FL model to learn robust,domain-invariant representations across all source domains.To evaluate the effectiveness of our approach,experiments on a medical imaging benchmark demonstrate that GPAF outperforms four FL baselines,achieving up to 17%higher classification accuracy and 25%faster convergence in non-IID scenarios.These results highlight GPAF’s capability to generalize across domains while maintaining strict privacy,offering a robust solution for decentralized healthcare challenges. 展开更多
关键词 Federated learning generative AI artificial intelligence healthcare field
在线阅读 下载PDF
Personalized Generative AI Services Through Federated Learning in 6G Edge Networks
7
作者 Li Zeshen Chen Zihan +1 位作者 Hu Xinyi Howard H.Yang 《China Communications》 2025年第7期1-13,共13页
Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse ... Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy. 展开更多
关键词 generative artificial intelligence personalized federated learning 6G networks
在线阅读 下载PDF
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
8
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
Solving forward and inverse problems of the nonlinear Schrodinger equation with the generalized PT-symmetric Scarf-Ⅱpotential via PINN deep learning 被引量:5
9
作者 Jiaheng Li Biao Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第12期1-13,共13页
In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other ... In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning. 展开更多
关键词 nonlinear Schrodinger equation generalized PT-symmetric scarf-Ⅱpotential physics-informed neural networks deep learning initial value and dirichlet boundary conditions data-driven coefficient discovery
原文传递
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
10
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
An Improved Gorilla Troops Optimizer Based on Lens Opposition-Based Learning and Adaptive β-Hill Climbing for Global Optimization 被引量:1
11
作者 Yaning Xiao Xue Sun +3 位作者 Yanling Guo Sanping Li Yapeng Zhang Yangwei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期815-850,共36页
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ... Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks. 展开更多
关键词 Gorilla troops optimizer circle chaotic mapping lens opposition-based learning adaptiveβ-hill climbing
在线阅读 下载PDF
Risk-sensitive reinforcement learning algorithms with generalized average criterion
12
作者 殷苌茗 王汉兴 赵飞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第3期405-416,共12页
A new algorithm is proposed, which immolates the optimality of control policies potentially to obtain the robnsticity of solutions. The robnsticity of solutions maybe becomes a very important property for a learning s... A new algorithm is proposed, which immolates the optimality of control policies potentially to obtain the robnsticity of solutions. The robnsticity of solutions maybe becomes a very important property for a learning system when there exists non-matching between theory models and practical physical system, or the practical system is not static, or the availability of a control action changes along with the variety of time. The main contribution is that a set of approximation algorithms and their convergence results are given. A generalized average operator instead of the general optimal operator max (or rain) is applied to study a class of important learning algorithms, dynamic prOgramming algorithms, and discuss their convergences from theoretic point of view. The purpose for this research is to improve the robnsticity of reinforcement learning algorithms theoretically. 展开更多
关键词 reinforcement learning risk-sensitive generalized average algorithm convergence
在线阅读 下载PDF
Parameter Self - Learning of Generalized Predictive Control Using BP Neural Network
13
作者 陈增强 袁著祉 王群仙 《Journal of China Textile University(English Edition)》 EI CAS 2000年第3期54-56,共3页
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith... This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method. 展开更多
关键词 generalized PREDICTIVE CONTROL SELF - tuning CONTROL SELF - learning CONTROL neural networks BP algorithm .
在线阅读 下载PDF
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
14
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 Spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
在线阅读 下载PDF
An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm
15
作者 Chen Zhang Liming Liu +5 位作者 Yufei Yang Yu Sun Jiaxu Ning Yu Zhang Changsheng Zhang Ying Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期5201-5223,共23页
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in... The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability. 展开更多
关键词 Flying foxes optimization(FFO)algorithm opposition-based learning niching techniques swarm intelligence metaheuristics evolutionary algorithms
在线阅读 下载PDF
A Dual Discriminator Method for Generalized Zero-Shot Learning
16
作者 Tianshu Wei Jinjie Huang 《Computers, Materials & Continua》 SCIE EI 2024年第4期1599-1612,共14页
Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof ... Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof different types of features and domain shift problems are two of the critical issues in zero-shot learning. Toaddress both of these issues, this paper proposes a new modeling structure. The traditional approach mappedsemantic features and visual features into the same feature space;based on this, a dual discriminator approachis used in the proposed model. This dual discriminator approach can further enhance the consistency betweensemantic and visual features. At the same time, this approach can also align unseen class semantic features andtraining set samples, providing a portion of information about the unseen classes. In addition, a new feature fusionmethod is proposed in the model. This method is equivalent to adding perturbation to the seen class features,which can reduce the degree to which the classification results in the model are biased towards the seen classes.At the same time, this feature fusion method can provide part of the information of the unseen classes, improvingits classification accuracy in generalized zero-shot learning and reducing domain bias. The proposed method isvalidated and compared with othermethods on four datasets, and fromthe experimental results, it can be seen thatthe method proposed in this paper achieves promising results. 展开更多
关键词 generalized zero-shot learning modality consistent DISCRIMINATOR domain shift problem feature fusion
在线阅读 下载PDF
An Opposition-Based Learning Adaptive Chaotic Particle Swarm Optimization Algorithm
17
作者 Chongyang Jiao Kunjie Yu Qinglei Zhou 《Journal of Bionic Engineering》 CSCD 2024年第6期3076-3097,共22页
To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite oppositi... To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite opposition-based learning process was applied to initialize the entire population,which enhanced the quality of the initial individuals and the population diversity,made the initial individuals distribute in the better quality areas,and accelerated the search efficiency of the algorithm.The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm,and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum.The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics,and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability,search accuracy and convergence speed.In addition,the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems. 展开更多
关键词 PSO opposition-based learning Chaotic motion Inertia weight Intelligent algorithm
在线阅读 下载PDF
Narrative Inquiry into Knowledge Generation in Teacher and Learner Learning Community
18
作者 吴会芳 沈惠娟 《海外英语》 2012年第4X期129-132,共4页
Narrative inquiry is applied to discuss the knowledge generation in teacher and learner learning community,which consists of one English teacher and 27 freshmen in a university in China.It is based on the social const... Narrative inquiry is applied to discuss the knowledge generation in teacher and learner learning community,which consists of one English teacher and 27 freshmen in a university in China.It is based on the social constructivism and cooperative learning theories.With the guidance of constructivists' knowledge conception,it aims to illuminate how knowledge is generated in a learning community.Class observation,interview,and journals were applied to collect data in the research.Analysis of the data enables the researcher to arrive at the argument that learners' prior personal and students themselves as knowledge resource are vital for knowledge generation.Furthermore,learning community provide a safe context for knowledge generation. 展开更多
关键词 NARRATIVE INQUIRY KNOWLEDGE generATION TEACHER and
在线阅读 下载PDF
Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification 被引量:42
19
作者 Ya Tu Yun Lin +1 位作者 Jin Wang Jeong-Uk Kim 《Computers, Materials & Continua》 SCIE EI 2018年第5期243-254,共12页
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp... Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier. 展开更多
关键词 Deep learning automated modulation classification semi-supervised learning generative adversarial networks
在线阅读 下载PDF
Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks 被引量:13
20
作者 Husam A.H.Al-Najjar Biswajeet Pradhan 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期625-637,共13页
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory... In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models. 展开更多
关键词 Landslide susceptibility INVENTORY Machine learning generative adversarial network Convolutional neural network Geographic information system
在线阅读 下载PDF
上一页 1 2 245 下一页 到第
使用帮助 返回顶部