In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
Motivated by the recent result obtained by Takahashi and Zembayashi in 2008,we prove a strong convergence theorem for finding a common element of the set of solutions of a generalized equilibrium problem and the set o...Motivated by the recent result obtained by Takahashi and Zembayashi in 2008,we prove a strong convergence theorem for finding a common element of the set of solutions of a generalized equilibrium problem and the set of fixed points of a hemi-relatively nonexpansive mapping in a Banach space by using the shrinking projection method.The main results obtained in this paper extend some recent results.展开更多
In this paper,we introduce a new iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems and the set of fixed points for nonexpansive mappings in Hilbert space.Unde...In this paper,we introduce a new iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems and the set of fixed points for nonexpansive mappings in Hilbert space.Under suitable conditions,some strong convergence theorems are proved.Our results extend and improve some recent results.展开更多
In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in...In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. The results presented in this paper partly extend and improve the corresponding results of the previous papers.展开更多
In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a so...In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.展开更多
This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed poin...This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are...In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.展开更多
A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for sol...A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.展开更多
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies...The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.展开更多
By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence re...By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.展开更多
A new bilevel generalized mixed equilibrium problem (BGMEF) is introduced and studied in topological vector spaces. By using a minimax inequality, the existence of solutions and the behavior of solution set for the ...A new bilevel generalized mixed equilibrium problem (BGMEF) is introduced and studied in topological vector spaces. By using a minimax inequality, the existence of solutions and the behavior of solution set for the BGMEP are studied under quite mild conditions. These results are new and generalize some recent results in this field.展开更多
A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary ...A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary generalized mixed equilibrium problem (AGMEP) is introduced to compute the approximate solutions of the BGMEP involving the GMVLIPs. By using a minimax inequality, the existence and the unique- ness of solutions of the AGMEP are proved under mild conditions without any coercive assumptions. By using an auxiliary principle technique, the new iterative algorithms are proposed and analyzed, with which the approximate solutions of the BGMEP are computed. The strong convergence of the iterative sequence generated by the algorithms is shown under mild conditions without any coercive assumptions. These new results can generalize some recent results in this field.展开更多
Generalized Nash equilibrium problem (GNEP) is an important model that has many applications in practice. However, a GNEP usually has multiple or even infinitely many Nash equilibrium points and it is not easy to ch...Generalized Nash equilibrium problem (GNEP) is an important model that has many applications in practice. However, a GNEP usually has multiple or even infinitely many Nash equilibrium points and it is not easy to choose a favorable solution from those equilibria. This paper considers a class of GNEP With some kind of separability. We first extend the so-called normalized equilibrium concept to the stationarity sense and then, we propose an approach to solve the normalized stationary points by reformulating the GNEP as a single optimization problem. We further demonstrate the proposed approach on a GNEP model in similar product markets.展开更多
By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the ge...By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.展开更多
A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalize...A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.展开更多
A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is intro...A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium pro...A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.展开更多
In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector pr...In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector problems may be general sets under natural assumptions,but are not limited to singletons.The other essentially equivalent approach via a separation principle is analyzed.Special cases to the classical vector equilibrium problem and vector variational inequality are also discussed.展开更多
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金Supported by Sichuan Educational Committee Science Foundation for Youths (Grant No.08ZB002)
文摘Motivated by the recent result obtained by Takahashi and Zembayashi in 2008,we prove a strong convergence theorem for finding a common element of the set of solutions of a generalized equilibrium problem and the set of fixed points of a hemi-relatively nonexpansive mapping in a Banach space by using the shrinking projection method.The main results obtained in this paper extend some recent results.
基金Supported by the Foundation for Young Scholars of the Education Department of Sichuan Province (GrantNo.09ZB102)
文摘In this paper,we introduce a new iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems and the set of fixed points for nonexpansive mappings in Hilbert space.Under suitable conditions,some strong convergence theorems are proved.Our results extend and improve some recent results.
基金supported by the Natural Science Foundation of Fujian Province(No.2014J01008)Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province(No.JA15624)
文摘In this papers weak and strong convergence theorems are established by hybrid iteration method for generalized equilibrium problem and fixed point problems of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. The results presented in this paper partly extend and improve the corresponding results of the previous papers.
基金supported by the Natural Science Foundation of Fujian Province under grant No.2014J01008
文摘In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Science Foundation of China and Shanghai Pujian Program
文摘In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.
基金supported by the Scientific Research Fun of Sichuan Normal University (11ZDL01)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.
文摘The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.
基金Supported by NSF of Chongqing and Science Foundations of Chongqing Jia1otong University
文摘By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new bilevel generalized mixed equilibrium problem (BGMEF) is introduced and studied in topological vector spaces. By using a minimax inequality, the existence of solutions and the behavior of solution set for the BGMEP are studied under quite mild conditions. These results are new and generalize some recent results in this field.
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Leading Academic Discipline Project of Sichuan Province of China(No.SZD0406)
文摘A new bilevel generalized mixed equilibrium problem (BGMEP) involving generalized mixed variational-like inequality problems (GMVLIPs) is introduced and studied in the reflexive Banach spaces. First, an auxiliary generalized mixed equilibrium problem (AGMEP) is introduced to compute the approximate solutions of the BGMEP involving the GMVLIPs. By using a minimax inequality, the existence and the unique- ness of solutions of the AGMEP are proved under mild conditions without any coercive assumptions. By using an auxiliary principle technique, the new iterative algorithms are proposed and analyzed, with which the approximate solutions of the BGMEP are computed. The strong convergence of the iterative sequence generated by the algorithms is shown under mild conditions without any coercive assumptions. These new results can generalize some recent results in this field.
基金Supported by the National Natural Science Foundation of China(Grant No.11071028)
文摘Generalized Nash equilibrium problem (GNEP) is an important model that has many applications in practice. However, a GNEP usually has multiple or even infinitely many Nash equilibrium points and it is not easy to choose a favorable solution from those equilibria. This paper considers a class of GNEP With some kind of separability. We first extend the so-called normalized equilibrium concept to the stationarity sense and then, we propose an approach to solve the normalized stationary points by reformulating the GNEP as a single optimization problem. We further demonstrate the proposed approach on a GNEP model in similar product markets.
基金Project supported by the Key Program of the National Natural Science Foundation of China(NSFC)(No.70831005)the National Natural Science Foundation of China(Nos.11171237,11226228,and 11201214)+1 种基金the Science and Technology Program Project of Henan Province of China(No.122300410256)the Natural Science Foundation of Henan Education Department of China(No.2011B110025)
文摘By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.
基金supported by the Scientific Research Fund of Sichuan Normal University (No.09ZDL04)the Sichuan Province Leading Academic Discipline Project (No.SZD0406)
文摘A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
基金Project supported by the Sichuan Province Leading Academic Discipline Project(No.SZD0406)the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)
文摘A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.
基金This research was supported by the National Natural Science Foundation of China(Nos.11301567 and 11571055)the Fundamental Research Funds for the Central Universities(No.106112015CDJXY100002).
文摘In this paper,by using scalarization techniques and a minimax strategy,error bound results in terms of gap functions for a generalized mixed vector equilibrium problem are established,where the solutions for vector problems may be general sets under natural assumptions,but are not limited to singletons.The other essentially equivalent approach via a separation principle is analyzed.Special cases to the classical vector equilibrium problem and vector variational inequality are also discussed.