The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupi...The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupied 11% of the system peak load in 1985 when the generator was in commercial operation. Since Taipower is an isolated system, at the N-2 conditions, those generators were reduced to 75% loading to protect the power system. By the way, to avoid damage of negative sequence current (NSC), the limits of the N3 power plant are stricter than those in the IEEE Standard. However, in 2010, the capacity ratio of each generator in the plant to the system peak load has been reduced to 3% only. To increase the economic benefit of those generators, it is required to reassess the operation limits of NSC. EMTP was used to calculate the levels of NSC from the out-linking transmission circuits. From the results of this study, the effects of NSC could be ignored when the four out-linking circuits are in N-0, N-1, and N-2 conditions. The generators can be operated in full loading under these conditions. The modifications to the NSC limits of the N3 power plant are also suggested.展开更多
The doubly-fed induction generator(DFIG)is considered to provide a low-reactance path in the negative-sequence system and naturally comply with requirements on the negative-sequence reactive current in emerging grid c...The doubly-fed induction generator(DFIG)is considered to provide a low-reactance path in the negative-sequence system and naturally comply with requirements on the negative-sequence reactive current in emerging grid codes.This paper shows otherwise and how the control strategy of converters plays a key role in the formation of the active and reactive current components.After investigating the existing control strategies from the perspective of grid code compliance and showing how they fail in addressing emerging requirements on the negative-sequence reactive current,we propose a new coordinated control strategy that complies with reactive current requirements in grid codes in the positive-and negative-sequence systems.The proposed method fully takes advantage of the current and voltage capacities of both the rotor-side converter(RSC)and grid-side converter(GSC),which enables the grid code compliance of the DFIG under unbalanced three-phase voltages due to asymmetrical faults.The mathematical investigations and proposed strategy are validated with detailed simulation models using the Electric Power Research Institute(EPRI)benchmark system.The derived mathematical expressions provide analytical clarifications on the response of the DFIG in the negative-sequence system from the grid perspective.展开更多
文摘The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupied 11% of the system peak load in 1985 when the generator was in commercial operation. Since Taipower is an isolated system, at the N-2 conditions, those generators were reduced to 75% loading to protect the power system. By the way, to avoid damage of negative sequence current (NSC), the limits of the N3 power plant are stricter than those in the IEEE Standard. However, in 2010, the capacity ratio of each generator in the plant to the system peak load has been reduced to 3% only. To increase the economic benefit of those generators, it is required to reassess the operation limits of NSC. EMTP was used to calculate the levels of NSC from the out-linking transmission circuits. From the results of this study, the effects of NSC could be ignored when the four out-linking circuits are in N-0, N-1, and N-2 conditions. The generators can be operated in full loading under these conditions. The modifications to the NSC limits of the N3 power plant are also suggested.
文摘The doubly-fed induction generator(DFIG)is considered to provide a low-reactance path in the negative-sequence system and naturally comply with requirements on the negative-sequence reactive current in emerging grid codes.This paper shows otherwise and how the control strategy of converters plays a key role in the formation of the active and reactive current components.After investigating the existing control strategies from the perspective of grid code compliance and showing how they fail in addressing emerging requirements on the negative-sequence reactive current,we propose a new coordinated control strategy that complies with reactive current requirements in grid codes in the positive-and negative-sequence systems.The proposed method fully takes advantage of the current and voltage capacities of both the rotor-side converter(RSC)and grid-side converter(GSC),which enables the grid code compliance of the DFIG under unbalanced three-phase voltages due to asymmetrical faults.The mathematical investigations and proposed strategy are validated with detailed simulation models using the Electric Power Research Institute(EPRI)benchmark system.The derived mathematical expressions provide analytical clarifications on the response of the DFIG in the negative-sequence system from the grid perspective.