This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
In this paper, the subspace subcodes of generalized Reed-Solomn codes are codes are introduced and the fomulas to compute the dimensions of these codes are given.
In this paper,Index Modulation(IM)aided Generalized Space-Time Block Coding(GSTBC)is proposed,which intrinsically exploits the benefits of IM concept,diversity gain and spatial multiplexing gain.Specifically,the infor...In this paper,Index Modulation(IM)aided Generalized Space-Time Block Coding(GSTBC)is proposed,which intrinsically exploits the benefits of IM concept,diversity gain and spatial multiplexing gain.Specifically,the information bits are partitioned into U groups,with each being modulated by IM symbols(i.e.Spatial Modulation(SM),Quadrature SM(QSM),etc).Next,the structure of GSTBC is invoked for each K IM symbol,and a total ofμ=U/K GSTBC codes are transmitted via T time slots.A Block Expectation Propagation(B-EP)detector is designed for the proposed IM-GSTBC structure.Moreover,the theoretical Average Bit Error Probability(ABEP)is derived for our IM-GSTBC system,which is confirmed by the simulation results and helpful for performance evaluation.Simulation results show that our proposed IM-GSTBC system is capable of striking an efficient trade-off between spatial multiplexing gain,spatial diversity gain as well as implementation cost imposed for both small-scale and large-scale MIMO antenna configurations.展开更多
A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work conditi...A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.展开更多
Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardwa...Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardware circuit and the soflware program flow chart of the SW/SFH PN code generator are also given,which is based on generalized Bent function sequence generator by using a single chip mlcrocomputer.展开更多
Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and...Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.展开更多
By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correc...By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the we...A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.展开更多
Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are ...Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are p-linearly independent. We then show that to any trellis that can be constructed from k p-linearly independent characteristic generators of C, there exists a trellis for C^⊥ with the same state-complexity profile, which generalizes the conjecture of Koetter and Vardy to a free cyclic code over Zpo.展开更多
Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of...Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of projective Reed-Solomon codes over finite fields with even characteristic.That is,let F_(q) be finite field with even characteristic,k∈{2,q-2},and let u(x)be the Lagrange interpolation polynomial of the first q components of the received vector u∈F_(q)+1 q Suppose that the(q+1)-th component of u is 0,and u(x)=λx^(k)+f_(≤k-2)(x),λx^(q-2)+f_(≤k-2)(x),where λ∈F^(*)_(q) and f_(≤k-2)(x)is a polynomial over F_(q) with degree no more than k-2.Then the received vector u is a deep hole of projective Reed-Solomon codes PRS(F_(q),k).In fact,our result partially solved an open problem on deep holes of projective Reed-Solomon codes proposed by Wan in 2020.展开更多
Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of...Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of LDPC codes is their relatively lower decoding complexity compared with turbo codes,while the disadvantage is its higher encoding complexity.In this paper,a new ap- proach is first proposed to construct high performance irregular systematic LDPC codes based on sparse generator matrix,which can significantly reduce the encoding complexity under the same de- coding complexity as that of regular or irregular LDPC codes defined by traditional sparse parity-check matrix.Then,the proposed generator-based systematic irregular LDPC codes are adopted as con- stituent block codes in rows and columns to design a new kind of product codes family,which also can be interpreted as irregular LDPC codes characterized by graph and thus decoded iteratively.Finally, the performance of the generator-based LDPC codes and the resultant product codes is investigated over an Additive White Gaussian Noise (AWGN) and also compared with the conventional LDPC codes under the same conditions of decoding complexity and channel noise.展开更多
In this paper,we construct three classes of Clifford subsystem maximum distance separable(MDS)codes based on Reed-Solomon codes and extended generalized Reed-Solomon codes over finite fields Fq for specific code lengt...In this paper,we construct three classes of Clifford subsystem maximum distance separable(MDS)codes based on Reed-Solomon codes and extended generalized Reed-Solomon codes over finite fields Fq for specific code lengths.Moreover,our Clifford subsystem MDS codes are new because their parameters differ from the previously known ones.展开更多
To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programmi...To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programming problems.Based upon these generalized invexity,G-Fritz-John (G-F-J) and G-Karnsh-Kuhn-Tucker (G-K-K-T) types sufficient optimality conditions were established for a feasible solution to be an efficient solution.Moreover,weak and strict duality results were derived for a G-Mond-Weir type dual under various types of generalized dI-G-type Ⅰ invexity assumptions.展开更多
Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flo...Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.展开更多
In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric ...In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.展开更多
It is of great significance to automatically generate code from structured flowchart. There are some deficiencies in existing researches, and their key algorithms and technologies are not elaborated, also there are ve...It is of great significance to automatically generate code from structured flowchart. There are some deficiencies in existing researches, and their key algorithms and technologies are not elaborated, also there are very few full-featured integrated development platforms that can generate code automatically based on structured flowchart. By analyzing the characteristics of structured flowchart, a structure identification algorithm for structured flowchart is put forward. The correctness of algorithm is verified by enumeration iteration. Then taking the identified flowchart as input, an automatic code generation algorithm is proposed. Also the correctness is verified by enumeration iteration. Finally an integrated development platform is developed using those algorithms, including flowchart modeling, code automatic generation, CDT\GCC\GDB etc. The correctness and effectiveness of algorithms proposed are verified through practical operations.展开更多
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
文摘In this paper, the subspace subcodes of generalized Reed-Solomn codes are codes are introduced and the fomulas to compute the dimensions of these codes are given.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900500in part by the National Science Foundation of China under Grant 62001179+1 种基金in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘In this paper,Index Modulation(IM)aided Generalized Space-Time Block Coding(GSTBC)is proposed,which intrinsically exploits the benefits of IM concept,diversity gain and spatial multiplexing gain.Specifically,the information bits are partitioned into U groups,with each being modulated by IM symbols(i.e.Spatial Modulation(SM),Quadrature SM(QSM),etc).Next,the structure of GSTBC is invoked for each K IM symbol,and a total ofμ=U/K GSTBC codes are transmitted via T time slots.A Block Expectation Propagation(B-EP)detector is designed for the proposed IM-GSTBC structure.Moreover,the theoretical Average Bit Error Probability(ABEP)is derived for our IM-GSTBC system,which is confirmed by the simulation results and helpful for performance evaluation.Simulation results show that our proposed IM-GSTBC system is capable of striking an efficient trade-off between spatial multiplexing gain,spatial diversity gain as well as implementation cost imposed for both small-scale and large-scale MIMO antenna configurations.
文摘A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.
文摘Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardware circuit and the soflware program flow chart of the SW/SFH PN code generator are also given,which is based on generalized Bent function sequence generator by using a single chip mlcrocomputer.
文摘Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.
文摘By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金Sponsored by the Ministerial Level Advanced Research Foundation (20304)
文摘A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.
基金Supported by the National Natural Science Foundation of China(60673071)
文摘Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are p-linearly independent. We then show that to any trellis that can be constructed from k p-linearly independent characteristic generators of C, there exists a trellis for C^⊥ with the same state-complexity profile, which generalizes the conjecture of Koetter and Vardy to a free cyclic code over Zpo.
基金Supported by Foundation of Sichuan Tourism University(20SCTUTY01)Initial Scientific Research Fund of Doctors in Sichuan Tourism University。
文摘Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of projective Reed-Solomon codes over finite fields with even characteristic.That is,let F_(q) be finite field with even characteristic,k∈{2,q-2},and let u(x)be the Lagrange interpolation polynomial of the first q components of the received vector u∈F_(q)+1 q Suppose that the(q+1)-th component of u is 0,and u(x)=λx^(k)+f_(≤k-2)(x),λx^(q-2)+f_(≤k-2)(x),where λ∈F^(*)_(q) and f_(≤k-2)(x)is a polynomial over F_(q) with degree no more than k-2.Then the received vector u is a deep hole of projective Reed-Solomon codes PRS(F_(q),k).In fact,our result partially solved an open problem on deep holes of projective Reed-Solomon codes proposed by Wan in 2020.
基金Supported by the National Aeronautical Foundation of Science and Research of China (No.04F52041)the Natural Science Foundation of Jiangsu Province (No.BK2006188).
文摘Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of LDPC codes is their relatively lower decoding complexity compared with turbo codes,while the disadvantage is its higher encoding complexity.In this paper,a new ap- proach is first proposed to construct high performance irregular systematic LDPC codes based on sparse generator matrix,which can significantly reduce the encoding complexity under the same de- coding complexity as that of regular or irregular LDPC codes defined by traditional sparse parity-check matrix.Then,the proposed generator-based systematic irregular LDPC codes are adopted as con- stituent block codes in rows and columns to design a new kind of product codes family,which also can be interpreted as irregular LDPC codes characterized by graph and thus decoded iteratively.Finally, the performance of the generator-based LDPC codes and the resultant product codes is investigated over an Additive White Gaussian Noise (AWGN) and also compared with the conventional LDPC codes under the same conditions of decoding complexity and channel noise.
基金Supported by Research Funds of Hubei Province(D20144401 and Q20174503)。
文摘In this paper,we construct three classes of Clifford subsystem maximum distance separable(MDS)codes based on Reed-Solomon codes and extended generalized Reed-Solomon codes over finite fields Fq for specific code lengths.Moreover,our Clifford subsystem MDS codes are new because their parameters differ from the previously known ones.
基金National Natural Science Foundation of China(No.11071110)
文摘To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programming problems.Based upon these generalized invexity,G-Fritz-John (G-F-J) and G-Karnsh-Kuhn-Tucker (G-K-K-T) types sufficient optimality conditions were established for a feasible solution to be an efficient solution.Moreover,weak and strict duality results were derived for a G-Mond-Weir type dual under various types of generalized dI-G-type Ⅰ invexity assumptions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61402131)the China Postdoctoral Science Foundation(Grant No.2014M551245,2016T90293)+1 种基金the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z13105)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201651)
文摘Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.
基金Supported by the Scientific Research Foundation of Hubei Provincial Education Department of China(Q20174503)the National Science Foundation of Hubei Polytechnic University of China(12xjz14A and 17xjz03A)。
文摘In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.
文摘It is of great significance to automatically generate code from structured flowchart. There are some deficiencies in existing researches, and their key algorithms and technologies are not elaborated, also there are very few full-featured integrated development platforms that can generate code automatically based on structured flowchart. By analyzing the characteristics of structured flowchart, a structure identification algorithm for structured flowchart is put forward. The correctness of algorithm is verified by enumeration iteration. Then taking the identified flowchart as input, an automatic code generation algorithm is proposed. Also the correctness is verified by enumeration iteration. Finally an integrated development platform is developed using those algorithms, including flowchart modeling, code automatic generation, CDT\GCC\GDB etc. The correctness and effectiveness of algorithms proposed are verified through practical operations.