The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int...The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.展开更多
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper...The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.展开更多
Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is t...Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum.展开更多
The dynamics of complex gene regulation systems can be simulated by the Gillespie algorithm. The classic Gillespie algorithm is appropriate to simulate a stochastic
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i...In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.展开更多
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper...The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.展开更多
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical...In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.展开更多
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result...In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.展开更多
文摘The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.
文摘The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(70071042,60073043,and 60133010)
文摘Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum.
文摘The dynamics of complex gene regulation systems can be simulated by the Gillespie algorithm. The classic Gillespie algorithm is appropriate to simulate a stochastic
基金supported by National Natural Science Foundation of China (Grant Nos. 60433020, 60175024 and 60773095)European Commission under grant No. TH/Asia Link/010 (111084)the Key Science-Technology Project of the National Education Ministry of China (Grant No. 02090),and the Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, P. R. China
文摘In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.
文摘The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.
文摘In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and the Center for Bioinformatics Pro-gram Grant of Harvard Center of Neurodegeneration and Repair,Harvard Medical School, Harvard University, Boston, USA
文摘In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.