期刊文献+
共找到670篇文章
< 1 2 34 >
每页显示 20 50 100
Gradient Gene Algorithm: a Fast Optimization Method to MST Problem
1
作者 Zhang Jin bo, Xu Jing wen, Li Yuan xiang State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期535-540,共6页
The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int... The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems. 展开更多
关键词 combination optimization minimum spanning tree problem extension of minimum spanning tree problem gradient gene algorithm
在线阅读 下载PDF
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
2
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
在线阅读 下载PDF
A Gene-Pool Based Genetic Algorithm for TSP 被引量:6
3
作者 Yang Hui, Kang Li-shan, Chen Yu-pingState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期217-223,共7页
Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is t... Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum. 展开更多
关键词 genetic algorithm gene Pool minimal spanning tree combinatorial optimization TSP
在线阅读 下载PDF
A modified Gillespie algorithm for E.coli gene regulation systems
4
作者 罗若愚 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期10-10,共1页
The dynamics of complex gene regulation systems can be simulated by the Gillespie algorithm. The classic Gillespie algorithm is appropriate to simulate a stochastic
关键词 COLI A modified Gillespie algorithm for E.coli gene regulation systems gene
原文传递
Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm 被引量:4
5
作者 Gui-xia Liu, Wei Feng, Han Wang, Lei Liu, Chun-guang ZhouCollege of Computer Science and Technology, Jilin University, Changchun 130012,P.R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期86-92,共7页
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i... In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy. 展开更多
关键词 gene regulatory networks two-stage learning algorithm Bayesian network immune evolutionary algorithm
在线阅读 下载PDF
Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modifed genetic algorithm with multi-type genes 被引量:40
6
作者 Deng Qibo Yu Jianqiao Wang Ningfei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1238-1250,共13页
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper... The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one. 展开更多
关键词 Cooperative control genetic algorithm Heterogeneous unmanned aerial vehicles Multi-type genes Task assignment
原文传递
Efficient Numerical Optimization Algorithm Based on New Real-Coded Genetic Algorithm, AREX + JGG, and Application to the Inverse Problem in Systems Biology 被引量:1
7
作者 Asako Komori Yukihiro Maki +2 位作者 Masahiko Nakatsui Isao Ono Masahiro Okamoto 《Applied Mathematics》 2012年第10期1463-1470,共8页
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical... In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search. 展开更多
关键词 Inverse Problem S-SYSTEM FORMALISM gene REGULATORY Network System Identification Real-Coded genetic algorithm
暂未订购
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
8
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 gene selection Support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) geneTIC algorithm (GA) Parameter SELECTION
暂未订购
基于GEO数据库应用WGCNA和机器学习算法筛选肝细胞癌相关核心基因及验证
9
作者 张博超 李强 +1 位作者 张如 孟杰 《现代检验医学杂志》 2026年第1期86-92,99,共8页
目的基于基因表达综合数据库(GEO)信息,筛选与肝细胞癌(HCC)相关的核心基因,评估其在预测HCC发病方面的临床应用价值。方法从GEO数据库下载HCC基因表达谱GSE14520、GSE63898,将数据合并后作为内部数据集。以P<0.05且|log_(2)FC|>... 目的基于基因表达综合数据库(GEO)信息,筛选与肝细胞癌(HCC)相关的核心基因,评估其在预测HCC发病方面的临床应用价值。方法从GEO数据库下载HCC基因表达谱GSE14520、GSE63898,将数据合并后作为内部数据集。以P<0.05且|log_(2)FC|>3.5为条件筛选HCC的差异基因,并与加权基因共表达网络分析(WGCNA)特征基因取交集后,筛选与HCC相关的核心基因。利用基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析核心基因的潜在功能。利用机器学习算法构建HCC的最优预测模型,并使用外部数据集GSE46444和GSE76427进行模型验证。通过Cytoscape和PPI软件筛选关键核心基因,开展细胞增殖和侵袭实验验证。结果通过差异表达分析和WCGNA分析筛选出6个核心基因,分别为CYP1A2、HAMP、MT1H、MT1M、GPC3、SPINK1。通过GO和KEGG通路富集分析,核心基因与金属离子反应、无机物质反应、矿物质吸收相关。机器学习算法筛选出Stepglm[both]与XGBoost算法确定HCC的最优模型,在内部数据集的AUC值为0.996(95%CI:0.991~0.998),在外部数据集GSE46444组和GSE76427组的AUC值分别为0.808(95%CI:0.727~0.877)和0.985(95%CI:0.971~0.996)。通过Cytoscape软件分析鉴定出的3个基因分别是MT1M、MT1H、GPC3,并且MT1H为HCC的关键核心基因。细胞实验发现敲除MT1H促进了肝癌细胞的增殖能力及侵袭能力(F=261.2、37.54,均P<0.001),表明MT1H具有抑癌作用。结论通过生物信息学筛选出CYP1A2、HAMP、MT1H、MT1M、GPC3、SPINK1可能是HCC潜在的生物诊断标志物,为HCC的临床诊疗提供思路。并且MT1H为HCC的关键核心基因,可以抑制HCC进展。 展开更多
关键词 加权基因共表达网络分析 机器学习算法 肝细胞癌 核心基因
暂未订购
Identification of metastasis-associated genes in colorectal cancer through an integrated genomic and transcriptomic analysis 被引量:2
10
作者 Xiaobo Li Sihua Peng 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2013年第6期623-636,共14页
Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroa... Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes. 展开更多
关键词 Colorectal cancer metastasis integrated analysis comparative genomic hybridization (CGH) Significant Analysis of Microarray (SAM) Database for Annotation Visualization and Integrated Discovery(DAVID) SVM-T-RFE gene selection algorithm
暂未订购
基于GenePANDA算法的精神分裂症药物靶基因预测
11
作者 孙慧 田卫东 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期401-411,共11页
精神分裂症是常见的精神障碍类疾病.目前,治疗精神分裂症的药物存在疗效差、副作用大和耐药性的问题,迫切需要开发新的药物,而发现新的药物靶基因是开发新药的重要环节.为了预测精神分裂症药物的靶基因,我们首先基于DrugBank中药物已知... 精神分裂症是常见的精神障碍类疾病.目前,治疗精神分裂症的药物存在疗效差、副作用大和耐药性的问题,迫切需要开发新的药物,而发现新的药物靶基因是开发新药的重要环节.为了预测精神分裂症药物的靶基因,我们首先基于DrugBank中药物已知的靶基因,使用网络算法GenePANDA预测出候选靶基因;之后,我们对药物已知靶基因进行功能富集分析,使用富集出的生物学通路筛选候选靶基因,最终得到48个候选靶基因.其中,29个基因被报道和精神分裂症直接相关,13个基因被报道为精神分裂症药物的靶基因.此外,在DrugBank中共有54种药物靶向预测出的基因,其中17种药物被研究报道可用于治疗精神分裂症. 展开更多
关键词 精神分裂症 药物靶基因 网络算法 功能富集分析
在线阅读 下载PDF
Multi-objective Optimization Conceptual Design of Product Structure Based on Variable Length Gene Expression 被引量:6
12
作者 WEI Xiaopeng ZHAO Tingting +2 位作者 JU Zhenhe ZHANG Shi LI Xiaoxiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期42-49,共8页
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc... It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively. 展开更多
关键词 gene expression multi-object optimization conceptual design genetic algorithm
在线阅读 下载PDF
Identification of Small and Discriminative Gene Signatures for Chemosensitivity Prediction in Breast Cancer
13
作者 Wei Hu 《Journal of Cancer Therapy》 2011年第2期196-202,共7页
Various gene signatures of chemosensitivity in breast cancer have been discovered. One previous study employed t-test to find a signature of 31 probe sets (27 genes) from a group of patients who received weekly preope... Various gene signatures of chemosensitivity in breast cancer have been discovered. One previous study employed t-test to find a signature of 31 probe sets (27 genes) from a group of patients who received weekly preoperative chemotherapy. Based on this signature, a 30-probe set diagonal linear discriminant analysis (DLDA-30) classifier of pathologic complete response (pCR) was constructed. In this study, we sought to uncover a signature that is much smaller than the 31 probe sets and yet has enhanced predictive performance. A signature of this nature could inform us what genes are essential in response prediction. Genetic algorithms (GAs) and sparse logistic regression (SLR) were employed to identify two such small signatures. The first had 13 probe sets (10 genes) selected from the 31 probe sets and was used to build a SLR predictor of pCR (SLR-13), and the second had 14 probe sets (14 genes) selected from the genes involved in Notch signaling pathway and was used to develop another SLR predictor of pCR (SLR-Notch-14). The SLR-13 and SLR-Notch-14 had a higher accuracy and a higher positive predictive value than the DLDA-30 with much lower P values, suggesting that our two signatures had their own discriminative power with high statistical significance. The SLR prediction model also suggested the dual role of gene RNUX1 in promoting residual disease (RD) or pCR in breast cancer. Our results demonstrated that the multivariable techniques such as GAs and SLR are effective in finding significant genes in chemosensitivity prediction. They have the advantage of revealing the interacting genes, which might be missed by single variable techniques such as t-test. 展开更多
关键词 genetic algorithm gene SIGNATURE BREAST Cancer SPARSE LOGISTIC Regression PREDICTOR CHEMOSENSITIVITY
暂未订购
Joint Analysis Method for Major Genes Controlling Multiple Correlated Quantitative Traits 被引量:5
14
作者 XIAO Jing WANG Xue-feng HU Zhi-qiu TANG Zai-xiang SUI Jiong-ming LI Xin XU Chen-wu 《Agricultural Sciences in China》 CAS CSCD 2006年第3期179-187,共9页
Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quan... Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers. 展开更多
关键词 multiple correlated quantitative traits major gene joint segregation analysis maximum likelihood estimation EM algorithm
在线阅读 下载PDF
机械瓣膜置换术后华法林稳定治疗剂量预测模型研究
15
作者 李金 万逸 +4 位作者 扶流祥 项海燕 杨崛圣 罗威 唐燕华 《赣南医科大学学报》 2025年第5期441-447,共7页
目的:通过检测多基因多位点及结合临床变量,构建人工机械瓣膜置换术后患者华法林给药的优化模型,以提升模型精确度和理想预测百分比。方法:对522例入选患者的临床资料进行追踪和详细记录,并通过Sanger基因测序法测定基因多态性。通过对... 目的:通过检测多基因多位点及结合临床变量,构建人工机械瓣膜置换术后患者华法林给药的优化模型,以提升模型精确度和理想预测百分比。方法:对522例入选患者的临床资料进行追踪和详细记录,并通过Sanger基因测序法测定基因多态性。通过对多元线性回归分析,探讨基因多态性和临床数据变量对华法林日稳定剂量的影响。在逐步回归过程中,筛选并剔除了具有多重共线性的变量,从而构建了预测华法林稳定剂量的计算模型。利用理想的预测百分比评估临床效用的表现。结果:最终有297例患者加入到模型的推演和验证中,新模型为:Y^=0.048-0.012(年龄)+1.512(体表面积)-0.812(rs9923231 AA)+1.811(rs9923231 GG)+1.581(rs1057910 AA)-1.090(rs1057910 AG)-0.159(rs699664 AA)。模型可解释60.2%的个体化用药差异。结论:GGCX(rs699664)可能是华法林剂量潜在的预测因子,本研究建立的模型有望在临床实践中指导中国汉族人群的华法林个体化用药。 展开更多
关键词 华法林 基因多态性 稳定治疗剂量 药物遗传学算法 中国人群
暂未订购
基于衰老视角的3种常见慢病共有机制与中药发现 被引量:1
16
作者 崔春利 闫浩晨 +2 位作者 王敏 王川 孙继佳 《西安交通大学学报(医学版)》 北大核心 2025年第1期101-111,共11页
目的 通过生物信息学分析、机器学习算法和分子对接等方法和技术探讨非酒精性脂肪肝(NAFLD)、2型糖尿病(T2DM)和动脉粥样硬化(AS)3种常见慢病和衰老基因相关的共有机制和潜在治疗药物。方法 从AgingAtlas、CellAge、GenAge和MSigDB等数... 目的 通过生物信息学分析、机器学习算法和分子对接等方法和技术探讨非酒精性脂肪肝(NAFLD)、2型糖尿病(T2DM)和动脉粥样硬化(AS)3种常见慢病和衰老基因相关的共有机制和潜在治疗药物。方法 从AgingAtlas、CellAge、GenAge和MSigDB等数据库中收集和整理与衰老相关的基因。将从CTD、DisGeNET、GeneCards、OMIM、PharmGKB和TTD等数据库中获得与NAFLD、T2DM、AS相关的基因和基于GEO差异基因分析得到的基因集取交集后,得到这3种常见慢性疾病的相关疾病基因集。利用clusterProfiler包对衰老基因集、3种疾病相关基因集进行KEGG通路富集分析并取交集。将筛选得到的KEGG通路上的富集基因合并后,导入STRING数据库并构建PPI网络,利用MCODE工具分析得到PPI网络中的核心子模块,计算其中每个节点、模块的重要值Nim和Cim。同时,采用Lasso回归模型、Boruta算法以及随机森林模型等3种机器学习模型进行特征基因筛选。利用HIT2.0数据库查找关键特征基因相关的靶向中药小分子。利用SwissADME和ADMETlab 3.0在线系统对小分子进行ADMET评价和分析。利用分子对接方法对关键作用靶点和筛选到的小分子进行对接。结果 总共获得1 325、616、78、597个与衰老、NAFLD、T2DM、AS相关的基因。衰老和3种疾病的KEGG通路富集分析结果取交集后得到2条共有交集通路,共包含243个基因。构建PPI网络,3个核心子模块中Cluster 2的Cim值最高。根据特征基因筛选结果,结合PPI网络模块分析结果,找到4个与衰老相关的特征基因:CDK6、CDKN1A、MYC、PTEN。这4个靶点具有94个潜在中药小分子候选药物,其中,白藜芦醇(resveratrol, RSV)是这4个靶点共有的中药小分子。ADMET评价显示,其具有良好的成药性。PTEN靶点具有较高的Nim值,RSV与PTEN进行分子对接,显示有较好的结合稳定性。结论 从衰老的角度来看,发现了一种潜在的中药小分子RSV,它可能通过调节关键基因PTEN来预防和治疗NAFLD、T2DM和AS这3种常见的慢性疾病。 展开更多
关键词 衰老相关基因 生物信息学分析 老年慢性疾病 机器学习算法
暂未订购
加权共表达网络分析与机器学习识别类风湿关节炎滑膜中的关键基因 被引量:4
17
作者 武英楷 史高龙 谢宗刚 《中国组织工程研究》 CAS 北大核心 2025年第2期294-301,共8页
背景:类风湿关节炎是一种全身的免疫相关性疾病,主要病理特点是关节滑膜炎性增生及关节软骨的破坏,其发病机制目前尚不明确,迫切需要发现新的具有高度敏感性和特异性的诊断标志物。目的:联合使用生物信息学技术及计算机学习算法,识别并... 背景:类风湿关节炎是一种全身的免疫相关性疾病,主要病理特点是关节滑膜炎性增生及关节软骨的破坏,其发病机制目前尚不明确,迫切需要发现新的具有高度敏感性和特异性的诊断标志物。目的:联合使用生物信息学技术及计算机学习算法,识别并筛选类风湿关节炎患者滑膜中的关键基因,构建类风湿关节炎预测模型并进行验证。方法:从基因表达综合数据库中下载3个包含类风湿关节炎患者滑膜的数据集(GSE77298、GSE55235、GSE55457),GSE77298和GSE55235作为训练集,GSE55457作为测试集,共纳入66个样本,其中类风湿关节炎患者滑膜样本39个,正常滑膜样本27个。应用R语言筛选训练集中的差异基因,然后使用加权共表达网络将训练集中的基因模块化,选出关键模块中的特征基因,将差异表达基因和特征基因取交集,交集基因进入下一步机器学习。采用3种机器学习方法:最小绝对值收敛和选择算子算法、支持向量机-递归特征消除和随机森林算法对交集基因进一步分析获得枢纽基因,将枢纽基因再次相交即得到类风湿关节炎滑膜中的关键基因。以关键基因为变量构建预测类风湿关节炎的列线图模型,推测患者发生类风湿关节炎的危险程度,使用受试者工作特征曲线确定类风湿关节炎预测模型及其关键基因的诊断价值。结果与结论:①通过差异分析,训练集中共筛选出差异基因730个,加权共表达网络分析得到特征基因185个,两者交集基因159个;②最小绝对值收敛和选择算子发现枢纽基因4个,支持向量机-递归特征消除发现枢纽基因11个,随机森林发现枢纽基因5个,取交集后获得关键基因2个(TNS3、SDC1);③基于2个关键基因,在训练集及测试集种构建列线图,其校准预测曲线与标准曲线贴合较好,且预测类风湿关节炎发生的临床效能良好;④上述结果证实,基于生物信息及机器学习算法获得的TNS3和SDC1有可能成为类风湿关节炎诊断和治疗的关键靶点。 展开更多
关键词 加权基因共表达网络 机器学习算法 类风湿关节炎 关键基因 预测模型
暂未订购
基于改进的多表达式编程算法的木材染色配方预测 被引量:2
18
作者 管雪梅 张威 杨渠三 《科学技术与工程》 北大核心 2025年第7期2865-2873,共9页
由于珍贵木材日益稀缺以及过度开发导致的严重环境问题,有必要通过对普通木材进行染色来模仿珍贵木材的外观。在本研究中采用计算机辅助染色技术,实现对普通木材的高精度染色,从而创造出外观类似珍贵木材的替代品,减少人们对它们的依赖... 由于珍贵木材日益稀缺以及过度开发导致的严重环境问题,有必要通过对普通木材进行染色来模仿珍贵木材的外观。在本研究中采用计算机辅助染色技术,实现对普通木材的高精度染色,从而创造出外观类似珍贵木材的替代品,减少人们对它们的依赖。首先,基于基因表达编程(gene expression programming, GEP)的概念,提出了一种多表达式编程(multi-expression programming, MEP)算法来预测染料配比,考虑到多种染料之间的复杂相互作用,采用多基因表达,MEP算法能够处理这些复杂的多种染料之间的相互作用,从而得到更直观的函数表达式。为了提高MEP的函数挖掘准确性,自适应调整突变和重组算子的概率,并使用并行编程来增强函数挖掘效率。与基因表达编程的结果相比,MEP深入挖掘了函数关系,并在颜色预测中获得了0.113的相对偏差结果。 展开更多
关键词 木材染色 基因表达编程 多表达式编程 计算机颜色匹配 遗传算法 光谱反射率
在线阅读 下载PDF
基于音乐基因表达式编程的音乐进化方法
19
作者 周绚菲 王琛 罗伟成 《复旦学报(自然科学版)》 北大核心 2025年第3期367-374,共8页
本文提出一种音乐基因表达式编程的模型,实现了特定音乐风格的音乐自动生成。建立了特定风格音乐的乐谱原料库来用作进化原料以及神经网络训练数据。在音乐进化阶段,迁移了基因表达式编程技术到音乐作曲中形成音乐基因表达式编程操作。... 本文提出一种音乐基因表达式编程的模型,实现了特定音乐风格的音乐自动生成。建立了特定风格音乐的乐谱原料库来用作进化原料以及神经网络训练数据。在音乐进化阶段,迁移了基因表达式编程技术到音乐作曲中形成音乐基因表达式编程操作。提出一种16位八进制数与乐谱之间的映射机制,实现以小节为单位的乐谱进化。在音乐评估阶段,将卷积神经网络评估模型以半监督学习的方式训练用以音乐评估,为音乐进化提供反馈。与目前其他研究生成的音乐相比较,本文方法所生成的音乐具有明显的特定音乐风格特征。 展开更多
关键词 计算机音乐 音乐生成 进化算法 基因表达式编程 音乐评估 卷积神经网络
在线阅读 下载PDF
求解大规模图划分问题的混合遗传算法 被引量:2
20
作者 曹欢欢 刘红卫 路文军 《吉林大学学报(理学版)》 北大核心 2025年第3期822-828,共7页
针对大规模图划分问题中划分方案数量随顶点数指数级增长而导致的计算复杂性,以及传统遗传算法在处理大规模问题时效率和精度不足的问题,提出一种混合遗传算法.首先,该算法对经过二进制编码的个体进行最佳匹配,通过识别并筛选出优良基因... 针对大规模图划分问题中划分方案数量随顶点数指数级增长而导致的计算复杂性,以及传统遗传算法在处理大规模问题时效率和精度不足的问题,提出一种混合遗传算法.首先,该算法对经过二进制编码的个体进行最佳匹配,通过识别并筛选出优良基因,有效缩小搜索范围,聚焦于更具潜力的搜索区域;其次,为避免传统交叉操作可能产生的非法解,该算法摒弃了随机交叉策略,仅生成一个潜在解;最后,在变异操作中引入禁忌搜索算子,生成完整的个体,从而增强算法的局部搜索能力,实现全局搜索与局部搜索之间的动态平衡.将该混合遗传算法应用于超大规模集成电路划分问题的实验结果表明,该算法可有效改进大规模图二划分问题解的质量. 展开更多
关键词 图划分 遗传算法 最佳匹配 优良基因 禁忌搜索
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部