Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of off...Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.展开更多
Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfe...Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfer pams.The presence of planets passing frequency,sun gear rotating frequency,or planet carrier rotating frequency in the envelope spectrum may confuse the analysis in fault diagnosis.Therefore,it is important to look for an approach to remove the interferences caused by the efect of planets passing or time variant vibration transfer paths.展开更多
A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inadditio...A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inaddition, features extracted from gearbox vibration data are identifiedby various classifiers. However, existing literatures leave much to bedesired in assessing performance of different combinatorial methods forgearbox fault diagnosis. To this end, this paper evaluated performance ofseveral typical combinatorial methods for gearbox fault diagnosis byassociating each of multifractal detrended fluctuation analysis (MFDFA),empirical mode decomposition (EMD) and wavelet transform (WT) witheach of neural network (NN), Mahalanobis distance decision rules(MDDR) and support vector machine (SVM). Following this,performance of different combinatorial methods was compared using agroup of gearbox vibration data containing slightly different faultpatterns. The results indicate that MFDFA performs better in featureextraction of gearbox vibration data and SVM does the same in faultidentification. Naturally, the method associating MFDFA with SVMshows huge potential for fault diagnosis of gearboxes. As a result, thispaper can provide some useful information on construction of a methodfor gearbox fault diagnosis.展开更多
Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely ...Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.展开更多
Modulation of the gear mesh vibration is a major field of research for the condition monitoring of planetary gearboxes.The modulation creates sidebands around the gearmesh frequency in the vibration spectrum,and the d...Modulation of the gear mesh vibration is a major field of research for the condition monitoring of planetary gearboxes.The modulation creates sidebands around the gearmesh frequency in the vibration spectrum,and the distribution of these sidebands has been researched in numerous papers.All publications on the subject assume that the effect of the time varying signal propagation delay between the main vibration source–the gear mesh point(s)–and the(usually fixed)transducer can be neglected.This paper investigates the validity of this assumption.To do so,a planetary gearbox with a transducer mounted on the(fixed)ring gear is studied,and the effect of the propagation delay is modelled as a phase modulation of the gear mesh vibration.General expressions are then derived for the distribution and strength of the modulation sidebands,and these expressions are applied to quantify the effect of the propagation delay on five industrial gearboxes.The results show that the amplitude of the sidebands is negligible and would not interfere with condition assessment based on analysis of the modulation of the gear mesh frequency,and thus the propagation delay can be neglected for practical purposes.展开更多
The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to i...The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.展开更多
This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a...This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.展开更多
This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization proble...This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
Gearboxes,known for their compact size and stable transmission capability,are widely used as power transmission structures in various types of mechanical equipment,such as wind turbines,helicopters,and special vehicle...Gearboxes,known for their compact size and stable transmission capability,are widely used as power transmission structures in various types of mechanical equipment,such as wind turbines,helicopters,and special vehicles.However,due to harsh and non-stationary working conditions,gear surfaces often deteriorate,leading to faults such as wear,pitting,and cracking.Therefore,it is vital to monitor the working status of gearboxes and diagnose gear faults as early as possible.Gear faults can induce characteristic modulation effects near the gear meshing frequency(GMF),resulting in the appearance of faultinduced sidebands in a vibration spectrum.Extraction of these sidebands allows for the diagnosis of gear faults in a gearbox.However,when faced with a planetary gearbox having a complex configuration,strong background noise and additional faultunrelated sidebands can interfere with fault-induced sidebands,making accurate diagnosis difficult.To address these challenging issues,this paper proposes a novel fault-induced gear meshing modulation sideband extraction method.In the process,the sidebands directly related to the gear fault near the GMF are first identified and then extracted by a variational harmonic mode decomposition(VHMD)method.Accordingly,a fault-related gear meshing modulation component(GMMC)can be accurately reconstructed by summing up the extracted fault-induced sidebands.Using the GMMC,the gear fault severity can be assessed by evaluating its amplitude modulation(AM)effect.The superior performance of the proposed method is finally demonstrated by experimental data.展开更多
Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, ...Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, and gear pairs, in planetary gearboxes, and the resulting vibration signal transmission and attenuation mechanisms are still unknown. In this study, a novel method for quantitatively analyzing the transmission and attenuation of vibration signals is proposed. A multibody dynamic model of the planetary gearbox considering nonlinear gear meshing is presented and experimentally validated. To avoid the interference of foundation vibration on the transmission of the fault signal, the fault impact factor(FIF) is used to describe the intensity of the failure, which aligns well with the experimental signals. Based on the FIF, the vibration signal attenuation of nonlinear interfaces such as splines, bearings, and gear meshing interfaces is quantitatively evaluated. To clarify the transfer paths of fault vibration signals inside the gearbox, the transfer path area method(TPAM) based on FIF is proposed. According to the simulated results,the primary transfer paths of fault vibration signals within the gearbox have been identified, which is of great help in understanding the transmission and attenuation of vibration signals in planetary gearboxes.展开更多
The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurr...The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSLMFD) technique to construct different subspaces adaptively for different fault pattems. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.展开更多
Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional mo...Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional motions of each axis in the higher-order topology modification technique and how to accurately add the different movements expressed in the form of higher-order polynomials to the corresponding motion axes of the machine tool,a flexible higher-order gear topology modification technique based on an electronic gearbox is proposed.Firstly,a two-parameter topology gear surface equation and a grinding model of wheel grinding gears are established,and the axial feed and tangential feed are expressed in a fifth-order polynomial formula.Secondly,the polynomial coefficients are solved according to the characteristics of the point contact when grinding gears.Finally,an improved electronic gearbox model is constructed by combining the polynomial interpolation function to achieve gear topology modification.The validity and feasibility of the modification method based on the electronic gearbox are verified by experimental examples,which is of great significance for the machining of modification gears based on the continuous generative grinding method of the worm grinding wheel.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex...Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex gearbox model consists of many machine elements (shafts, gears, bearings, housing, seals, and shaft-hub connections). The gearbox must be understood as a system with interactive parts. Next to the calculation of kinematics, load capacities and life times of single elements, aspects of load distribution and efficiency and noise excitation of gearboxes become important. The wide range of knowhow needed mostly cannot be covered by a small number of engineers. The development of automated calculation routines with understandable and comprehensive results is the goal for these research projects that lead to sottware-realizing solutions for engineers to efficiently design, calculate, optimize and verify gearboxes with minimal resources in terms of calculation experts and time.展开更多
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus...During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.展开更多
China manned space station is designed to operate for over ten years. Long-term and sustainable research on space science and technology will be conducted during its operation. The application payloads must meet the ...China manned space station is designed to operate for over ten years. Long-term and sustainable research on space science and technology will be conducted during its operation. The application payloads must meet the ‘‘long life and high reliability" mission requirement. Gearbox machinery is one of the essential devices in an aerospace utilization system, failure of which may lead to downtime loss even during some disastrous catastrophes. A fault diagnosis of gearbox has attracted attentions for its significance in preventing catastrophic accidents and guaranteeing sufficient maintenance. A novel fault diagnosis method based on the Ensemble Multi-Fault Features Indexing(EMFFI) approach is proposed for the condition monitoring of gearboxes. Different from traditional methods of signal analysis in the one-dimensional space, this study employs a supervised learning method to determine the faults of a gearbox in a two-dimensional space using the classification model established by training the features extracted automatically from diagnostic vibration signals captured. The proposed method mainly includes the following steps. First, the vibration signals are transformed into a bi-spectrum contour map utilizing bi-spectrum technology,which provides a basis for the following image-based feature extraction. Then, Speeded-Up Robustness Feature(SURF) is applied to automatically extract the image feature points of the bi-spectrum contour map using a multi-fault features indexing theory, and the feature dimension is reduced by Linear Discriminant Analysis(LDA). Finally, Random Forest(RF) is introduced to identify the fault types of the gearbox. The test results verify that the proposed method based on the multi-fault features indexing approach achieves the target of high diagnostic accuracy and can serve as a highly effective technique to discover faults in a gearbox machinery such as a two-stage one.展开更多
Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on parti...Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.展开更多
文摘Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.
文摘Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfer pams.The presence of planets passing frequency,sun gear rotating frequency,or planet carrier rotating frequency in the envelope spectrum may confuse the analysis in fault diagnosis.Therefore,it is important to look for an approach to remove the interferences caused by the efect of planets passing or time variant vibration transfer paths.
基金supported by Shandong ProvincialNatural Science Foundation China (ZR2012EEL07).
文摘A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inaddition, features extracted from gearbox vibration data are identifiedby various classifiers. However, existing literatures leave much to bedesired in assessing performance of different combinatorial methods forgearbox fault diagnosis. To this end, this paper evaluated performance ofseveral typical combinatorial methods for gearbox fault diagnosis byassociating each of multifractal detrended fluctuation analysis (MFDFA),empirical mode decomposition (EMD) and wavelet transform (WT) witheach of neural network (NN), Mahalanobis distance decision rules(MDDR) and support vector machine (SVM). Following this,performance of different combinatorial methods was compared using agroup of gearbox vibration data containing slightly different faultpatterns. The results indicate that MFDFA performs better in featureextraction of gearbox vibration data and SVM does the same in faultidentification. Naturally, the method associating MFDFA with SVMshows huge potential for fault diagnosis of gearboxes. As a result, thispaper can provide some useful information on construction of a methodfor gearbox fault diagnosis.
基金Supported by Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi’an University of Science and Technology(Grant No.SKL-MEEIM201904)National Natural Science Foundation of China(Grant Nos.51805352,51605380).
文摘Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.
基金The part of this research conducted at the University of New South Wales was supported by the Australian Government through the Australian Research Council Discovery Project DP160103501.
文摘Modulation of the gear mesh vibration is a major field of research for the condition monitoring of planetary gearboxes.The modulation creates sidebands around the gearmesh frequency in the vibration spectrum,and the distribution of these sidebands has been researched in numerous papers.All publications on the subject assume that the effect of the time varying signal propagation delay between the main vibration source–the gear mesh point(s)–and the(usually fixed)transducer can be neglected.This paper investigates the validity of this assumption.To do so,a planetary gearbox with a transducer mounted on the(fixed)ring gear is studied,and the effect of the propagation delay is modelled as a phase modulation of the gear mesh vibration.General expressions are then derived for the distribution and strength of the modulation sidebands,and these expressions are applied to quantify the effect of the propagation delay on five industrial gearboxes.The results show that the amplitude of the sidebands is negligible and would not interfere with condition assessment based on analysis of the modulation of the gear mesh frequency,and thus the propagation delay can be neglected for practical purposes.
基金sponsored by the National Natural Science Foundation of China(Grant#52375115)Shanghai Rising-Star Program(Grant#22YF1450500)Fundamental Research Funds for the Central Universities.Reviewers’and the editor’s efforts are also much appreciated.
文摘The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.
文摘This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.
文摘This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205112,12121002)the China Postdoctoral Science Foundation(Grant No.2022M712063)。
文摘Gearboxes,known for their compact size and stable transmission capability,are widely used as power transmission structures in various types of mechanical equipment,such as wind turbines,helicopters,and special vehicles.However,due to harsh and non-stationary working conditions,gear surfaces often deteriorate,leading to faults such as wear,pitting,and cracking.Therefore,it is vital to monitor the working status of gearboxes and diagnose gear faults as early as possible.Gear faults can induce characteristic modulation effects near the gear meshing frequency(GMF),resulting in the appearance of faultinduced sidebands in a vibration spectrum.Extraction of these sidebands allows for the diagnosis of gear faults in a gearbox.However,when faced with a planetary gearbox having a complex configuration,strong background noise and additional faultunrelated sidebands can interfere with fault-induced sidebands,making accurate diagnosis difficult.To address these challenging issues,this paper proposes a novel fault-induced gear meshing modulation sideband extraction method.In the process,the sidebands directly related to the gear fault near the GMF are first identified and then extracted by a variational harmonic mode decomposition(VHMD)method.Accordingly,a fault-related gear meshing modulation component(GMMC)can be accurately reconstructed by summing up the extracted fault-induced sidebands.Using the GMMC,the gear fault severity can be assessed by evaluating its amplitude modulation(AM)effect.The superior performance of the proposed method is finally demonstrated by experimental data.
文摘Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, and gear pairs, in planetary gearboxes, and the resulting vibration signal transmission and attenuation mechanisms are still unknown. In this study, a novel method for quantitatively analyzing the transmission and attenuation of vibration signals is proposed. A multibody dynamic model of the planetary gearbox considering nonlinear gear meshing is presented and experimentally validated. To avoid the interference of foundation vibration on the transmission of the fault signal, the fault impact factor(FIF) is used to describe the intensity of the failure, which aligns well with the experimental signals. Based on the FIF, the vibration signal attenuation of nonlinear interfaces such as splines, bearings, and gear meshing interfaces is quantitatively evaluated. To clarify the transfer paths of fault vibration signals inside the gearbox, the transfer path area method(TPAM) based on FIF is proposed. According to the simulated results,the primary transfer paths of fault vibration signals within the gearbox have been identified, which is of great help in understanding the transmission and attenuation of vibration signals in planetary gearboxes.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 51505364 and 51335006), the National Key Basic Research Program of China (Grant No. 2015CB057400), and the Program for Changjiang Scholars. The authors thank NREL for supporting this work and providing the vibration data used for the validation of the JSL-MFD technique.
文摘The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSLMFD) technique to construct different subspaces adaptively for different fault pattems. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.
基金Projects(52275483,52075142,U22B2084)supported by the National Natural Science Foundation of ChinaProject(JZ2023HGPA0292)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional motions of each axis in the higher-order topology modification technique and how to accurately add the different movements expressed in the form of higher-order polynomials to the corresponding motion axes of the machine tool,a flexible higher-order gear topology modification technique based on an electronic gearbox is proposed.Firstly,a two-parameter topology gear surface equation and a grinding model of wheel grinding gears are established,and the axial feed and tangential feed are expressed in a fifth-order polynomial formula.Secondly,the polynomial coefficients are solved according to the characteristics of the point contact when grinding gears.Finally,an improved electronic gearbox model is constructed by combining the polynomial interpolation function to achieve gear topology modification.The validity and feasibility of the modification method based on the electronic gearbox are verified by experimental examples,which is of great significance for the machining of modification gears based on the continuous generative grinding method of the worm grinding wheel.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
文摘Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex gearbox model consists of many machine elements (shafts, gears, bearings, housing, seals, and shaft-hub connections). The gearbox must be understood as a system with interactive parts. Next to the calculation of kinematics, load capacities and life times of single elements, aspects of load distribution and efficiency and noise excitation of gearboxes become important. The wide range of knowhow needed mostly cannot be covered by a small number of engineers. The development of automated calculation routines with understandable and comprehensive results is the goal for these research projects that lead to sottware-realizing solutions for engineers to efficiently design, calculate, optimize and verify gearboxes with minimal resources in terms of calculation experts and time.
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
基金Supported by National Natural Science Foundation of China(Grant No.51475053)
文摘During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.
基金supported by Chinese Academy of Sciences(CAS)Pioneer Hundred Talents Program(No.2017-112)
文摘China manned space station is designed to operate for over ten years. Long-term and sustainable research on space science and technology will be conducted during its operation. The application payloads must meet the ‘‘long life and high reliability" mission requirement. Gearbox machinery is one of the essential devices in an aerospace utilization system, failure of which may lead to downtime loss even during some disastrous catastrophes. A fault diagnosis of gearbox has attracted attentions for its significance in preventing catastrophic accidents and guaranteeing sufficient maintenance. A novel fault diagnosis method based on the Ensemble Multi-Fault Features Indexing(EMFFI) approach is proposed for the condition monitoring of gearboxes. Different from traditional methods of signal analysis in the one-dimensional space, this study employs a supervised learning method to determine the faults of a gearbox in a two-dimensional space using the classification model established by training the features extracted automatically from diagnostic vibration signals captured. The proposed method mainly includes the following steps. First, the vibration signals are transformed into a bi-spectrum contour map utilizing bi-spectrum technology,which provides a basis for the following image-based feature extraction. Then, Speeded-Up Robustness Feature(SURF) is applied to automatically extract the image feature points of the bi-spectrum contour map using a multi-fault features indexing theory, and the feature dimension is reduced by Linear Discriminant Analysis(LDA). Finally, Random Forest(RF) is introduced to identify the fault types of the gearbox. The test results verify that the proposed method based on the multi-fault features indexing approach achieves the target of high diagnostic accuracy and can serve as a highly effective technique to discover faults in a gearbox machinery such as a two-stage one.
基金Project(50875247) supported by the National Natural Science Foundation of ChinaProject(2007011070) supported by the Natural Science Foundation of Shanxi Province, China
文摘Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.