For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the mag...For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.展开更多
An improved hybrid Time of Arrival (ToA)/ Angle of Arrival (AoA) location algorithm by adopting Gauss-Newton iterative algorithm is proposed. It is with the advantage of fast convergence and combining with the grid-se...An improved hybrid Time of Arrival (ToA)/ Angle of Arrival (AoA) location algorithm by adopting Gauss-Newton iterative algorithm is proposed. It is with the advantage of fast convergence and combining with the grid-search-based method to optimize the initial object coordinates of the iteration, meanwhile, under the condition of small measurement errors caused by noises of ToA and AoA, the algorithm performance can be improved effectively. In the Non-Line-of-Sight (NLoS) environments of the Wireless Sensor Network (WSN), simulation results show that improved accuracy is gained with moderate flexibility and fast steady convergence compared with the existing algorithms.展开更多
Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation...Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation (ALAD) algorithm is proposed in this paper. The objective function of ALAD is constructed by introducing a deterministic function to approximate the absolute value function. Based on the function, the recursive equations for parameter identification are derived using Gauss-Newton iterative algorithm without any simplification. This algorithm has advantages of simple calculation and easy implementation, and it has second order convergence speed. Compared with the LS method, the new algorithm has better robustness when disorder and peak noises exist in the measured data. Simulation results show the efficiency of the proposed method.展开更多
文摘For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.
基金supported by National Natural Science Foundation of China under Grant No.61172073State Key Laboratory of Networking and Switching Technology (Beijing Universityof Posts and Telecommunications) under Grant No.SKLNST-2009-1-09+1 种基金Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, P. R.ChinaChina Fundamental Research Funds for the Central Universities:Beijing Jiaotong University
文摘An improved hybrid Time of Arrival (ToA)/ Angle of Arrival (AoA) location algorithm by adopting Gauss-Newton iterative algorithm is proposed. It is with the advantage of fast convergence and combining with the grid-search-based method to optimize the initial object coordinates of the iteration, meanwhile, under the condition of small measurement errors caused by noises of ToA and AoA, the algorithm performance can be improved effectively. In the Non-Line-of-Sight (NLoS) environments of the Wireless Sensor Network (WSN), simulation results show that improved accuracy is gained with moderate flexibility and fast steady convergence compared with the existing algorithms.
基金supported by Important National Science & Technology Specific Projects (No.2011ZX05021-003)
文摘Considering the situation that the least-squares (LS) method for system identification has poor robustness and the least absolute deviation (LAD) algorithm is hard to construct, an approximate least absolute deviation (ALAD) algorithm is proposed in this paper. The objective function of ALAD is constructed by introducing a deterministic function to approximate the absolute value function. Based on the function, the recursive equations for parameter identification are derived using Gauss-Newton iterative algorithm without any simplification. This algorithm has advantages of simple calculation and easy implementation, and it has second order convergence speed. Compared with the LS method, the new algorithm has better robustness when disorder and peak noises exist in the measured data. Simulation results show the efficiency of the proposed method.