Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First,...In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.展开更多
The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be consid...The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.展开更多
This paper proposes a scheme for realization of a three-qubit Toffoli gate operation using three four-level atoms by a selective atom-field interaction in a cavity quantum electrodynamics system. In the proposed proto...This paper proposes a scheme for realization of a three-qubit Toffoli gate operation using three four-level atoms by a selective atom-field interaction in a cavity quantum electrodynamics system. In the proposed protocol, the quantum information is encoded on the stable ground states of atoms, and atomic spontaneous emission is negligible as the large atom-avity detuning effectively suppresses the spontaneous decay of the atoms. The influence of the dissipation on fidelity and success probability of the three-qubit Toffoli gate is also discussed. The scheme can also be applied to realize an N-qubit Toffoli gate and the interaction time required does not rise with increasing the number of qubits.展开更多
A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelte...A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.展开更多
A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in ...A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in a pipe flow via flow visualization and PIV analysis was attempted. As a result, four kinds of steady necklace-type vortex systems, 2-vortex, 4-vortex, 6-vortex and 8-vortex systems, were clearly observed in a Reynolds number between 290 and 2130. In addition, the main vortex was observed in the Reynolds number range between 2130 and 4870 with difficulty. On this account, both the center position and vorticity in the main vortex are presented against Reynolds number.展开更多
Linked tetra shaft and double cantilever flat flap gate is a new type of structure in water conservancy projects,but the traditional method is now adopted in its design.In order to the application and dissemination ...Linked tetra shaft and double cantilever flat flap gate is a new type of structure in water conservancy projects,but the traditional method is now adopted in its design.In order to the application and dissemination of the type of sluice,this paper researches the difficult points of design advance,through researching the motion locus & stress coundition of linked tetra shaft system.The writer will build up the mathmatical model and handle it with the computer.Thus,we can achieve the modern desing on the basis of the software of linked tetra shaft system development.展开更多
We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum...We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.展开更多
We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as m...We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.展开更多
We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by ...We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate.展开更多
We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states ...We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states of the cavity mode and the two metastable ground states of the atom. Even under the condition of systematic dissipations, this scheme can also be realized with fidelity of 98.6% and success probability of 0.767.展开更多
We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be impleme...We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be implemented with unity fidelity and unity probability by using a maximally entangled pair of qudits as a quantum channel. We also put forward a scheme for probabilistically implementing the nonlocal operation with unity fidelity by employing a partially entangled qudit pair as a quantum channel. Analysis of the scheme indicates that the use of partially entangled quantum channel for implementing the nonlocal generalized quantum CNOT gate leads to the problem of 'the general optimal information extraction'. We also point out that the nonlocal generalized quantum CNOT gate can be used in the entanglement swapping between particles belonging to distant users in a communication network and distributed quantum computer.展开更多
Photonic hyper-parallel quantum gates play a critical role in high-capacity quantum communication and fast quantum computing.Here,based on photon scattering in onedimensional(1D)waveguides,we present some heralded sch...Photonic hyper-parallel quantum gates play a critical role in high-capacity quantum communication and fast quantum computing.Here,based on photon scattering in onedimensional(1D)waveguides,we present some heralded schemes for constructing four-qubit hyper-controlled-not(hyper-CNOT)gates in two-photon systems.The qubits are encoded on both the polarization and spatial-mode degrees of freedoms(DOFs)of the photons,which can simplify the quantum circuit and reduce the quantum resource consumption.In our schemes,the faulty scattering events between photons and emitters caused by system imperfections can be filtered out and discarded.That is,our protocols for hyper-CNOT gates work in a heralded way.Our calculations show that,with great progress in the emitter-waveguide systems,our photonic hyper-CNOT gates may be experimentally feasible.展开更多
Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and ...Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.展开更多
A two stage turbocharging control system was proposed,in which the pressure regulator valve with a close-loop pressure adjusting function instead of a high speed on-off solenoid valve,is used as a driving mechanism of...A two stage turbocharging control system was proposed,in which the pressure regulator valve with a close-loop pressure adjusting function instead of a high speed on-off solenoid valve,is used as a driving mechanism of waste gate.A digital-analog(DA)conversion circuit based on pulse width modulation(PWM)generates one analog voltage signal required by the pressure regulating valve control.The principle of the DA conversion circuit was analyzed,meanwhile,the performance of the conversion circuit was improved by adopting a speed-up capacitor,which helps to increase the stability and responsiveness of the control voltage generated by the conversion circuit;the structure parameters of the circuit was optimized by simulation.After the optimization,the ripple wave of circuit output voltage was kept within16mV under the 12bit conversion accuracy,the conversion time of the circuit could be reduced to 4ms.The engine bench test show that the turbocharging boost pressure control system which adopted the circuit had a rather good stable control accuracy(the steady state within 0.8%)and dynamic response(the regulation time is less than 4s).展开更多
Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) ...Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.展开更多
Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;how...Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.展开更多
In recent years, driven by the booming housing market with high supply and demand, China has witnessed an unprecedented increase in residential areas in fast speed. However, most of the newly established communities h...In recent years, driven by the booming housing market with high supply and demand, China has witnessed an unprecedented increase in residential areas in fast speed. However, most of the newly established communities have not yet get rid of the self-supporting and self-sufficient mode of the farming culture. Currently, gated communities are characterized by closure, large population, large area, single function, little contact, etc., decreasing the urban road network density and reachability. And the internal travel is mainly dependent on the main roads through a city, which interferes with urban roads and increases the traffic pressure on the surrounding road network. Therefore, this paper took the Donghu District in Nanchang as an example to study opening gated communities to public, so as to promote the urban traffic microcirculation and increase the density and reachability of the regional road network, thereby sharing the traffic pressure for the main roads and strengthening the neighborhood contact.展开更多
In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms...In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.展开更多
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by National Natural Science Foundation of China(61573330)Chinese Academy of Sciences(CAS)the World Academy of Sciences(TWAS)
文摘In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation.Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.
文摘The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.
基金Project supported by the Natural Science Foundation of Hunan Province,China (Grant No 06JJ50118)
文摘This paper proposes a scheme for realization of a three-qubit Toffoli gate operation using three four-level atoms by a selective atom-field interaction in a cavity quantum electrodynamics system. In the proposed protocol, the quantum information is encoded on the stable ground states of atoms, and atomic spontaneous emission is negligible as the large atom-avity detuning effectively suppresses the spontaneous decay of the atoms. The influence of the dissipation on fidelity and success probability of the three-qubit Toffoli gate is also discussed. The scheme can also be applied to realize an N-qubit Toffoli gate and the interaction time required does not rise with increasing the number of qubits.
文摘A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.
文摘A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in a pipe flow via flow visualization and PIV analysis was attempted. As a result, four kinds of steady necklace-type vortex systems, 2-vortex, 4-vortex, 6-vortex and 8-vortex systems, were clearly observed in a Reynolds number between 290 and 2130. In addition, the main vortex was observed in the Reynolds number range between 2130 and 4870 with difficulty. On this account, both the center position and vorticity in the main vortex are presented against Reynolds number.
文摘Linked tetra shaft and double cantilever flat flap gate is a new type of structure in water conservancy projects,but the traditional method is now adopted in its design.In order to the application and dissemination of the type of sluice,this paper researches the difficult points of design advance,through researching the motion locus & stress coundition of linked tetra shaft system.The writer will build up the mathmatical model and handle it with the computer.Thus,we can achieve the modern desing on the basis of the software of linked tetra shaft system development.
基金supported by the Natural Science Foundation of Hunan Province under Grant No.06JJ50118
文摘We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.
基金Project supported by the National Natural Science Foundation (Grant Nos 10574022 and 10575022)the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006)
文摘We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.
文摘We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374025
文摘We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states of the cavity mode and the two metastable ground states of the atom. Even under the condition of systematic dissipations, this scheme can also be realized with fidelity of 98.6% and success probability of 0.767.
文摘We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be implemented with unity fidelity and unity probability by using a maximally entangled pair of qudits as a quantum channel. We also put forward a scheme for probabilistically implementing the nonlocal operation with unity fidelity by employing a partially entangled qudit pair as a quantum channel. Analysis of the scheme indicates that the use of partially entangled quantum channel for implementing the nonlocal generalized quantum CNOT gate leads to the problem of 'the general optimal information extraction'. We also point out that the nonlocal generalized quantum CNOT gate can be used in the entanglement swapping between particles belonging to distant users in a communication network and distributed quantum computer.
基金supported by the Tianjin Natural Science Foundation under Grant No.23JCQNJC00560the Natural Science Funds of Tianjin Normal University under Grant No.YJRC202421+2 种基金the National Natural Science Foundation of China under Grants Nos.12004281 and 62371038the Scientific Research the Natural Science Basic Research Program of Shaanxi under Grant No.2023-JC-QN-0092the Program Funded by Education Department of Shaanxi Provincial Government under Grant No.23JK0705。
文摘Photonic hyper-parallel quantum gates play a critical role in high-capacity quantum communication and fast quantum computing.Here,based on photon scattering in onedimensional(1D)waveguides,we present some heralded schemes for constructing four-qubit hyper-controlled-not(hyper-CNOT)gates in two-photon systems.The qubits are encoded on both the polarization and spatial-mode degrees of freedoms(DOFs)of the photons,which can simplify the quantum circuit and reduce the quantum resource consumption.In our schemes,the faulty scattering events between photons and emitters caused by system imperfections can be filtered out and discarded.That is,our protocols for hyper-CNOT gates work in a heralded way.Our calculations show that,with great progress in the emitter-waveguide systems,our photonic hyper-CNOT gates may be experimentally feasible.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University in China (Grant No 2007-31)
文摘Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.
基金Supported by the Ministerial Level Research Project of China(D2220112901)
文摘A two stage turbocharging control system was proposed,in which the pressure regulator valve with a close-loop pressure adjusting function instead of a high speed on-off solenoid valve,is used as a driving mechanism of waste gate.A digital-analog(DA)conversion circuit based on pulse width modulation(PWM)generates one analog voltage signal required by the pressure regulating valve control.The principle of the DA conversion circuit was analyzed,meanwhile,the performance of the conversion circuit was improved by adopting a speed-up capacitor,which helps to increase the stability and responsiveness of the control voltage generated by the conversion circuit;the structure parameters of the circuit was optimized by simulation.After the optimization,the ripple wave of circuit output voltage was kept within16mV under the 12bit conversion accuracy,the conversion time of the circuit could be reduced to 4ms.The engine bench test show that the turbocharging boost pressure control system which adopted the circuit had a rather good stable control accuracy(the steady state within 0.8%)and dynamic response(the regulation time is less than 4s).
基金Project supported by the National Fundamental Research Program of China(Grant No.2010CB923202)the Fundamental Research Funds for the Central Universities,Chinathe National Natural Science Foundation of China(Grant Nos.61177085,61205117,and 61377097)
文摘Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.
文摘Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.
文摘In recent years, driven by the booming housing market with high supply and demand, China has witnessed an unprecedented increase in residential areas in fast speed. However, most of the newly established communities have not yet get rid of the self-supporting and self-sufficient mode of the farming culture. Currently, gated communities are characterized by closure, large population, large area, single function, little contact, etc., decreasing the urban road network density and reachability. And the internal travel is mainly dependent on the main roads through a city, which interferes with urban roads and increases the traffic pressure on the surrounding road network. Therefore, this paper took the Donghu District in Nanchang as an example to study opening gated communities to public, so as to promote the urban traffic microcirculation and increase the density and reachability of the regional road network, thereby sharing the traffic pressure for the main roads and strengthening the neighborhood contact.
基金Guangdong Province Science and Technology Guiding Project(2005B10101013)
文摘In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.