Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy a...During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy adaptive PID controller(Fuzzy PID)combining PID control with fuzzy logic to achieve self-adaptive adjustment of PID parameters in UAV flight control systems,thereby enhancing system robustness.A quadrotor UAV control model was developed in Simulink,and a Fuzzy PID control system was constructed by integrating fuzzy control logic for simulation and experimental validation.Test results demonstrate that UAVs governed by Fuzzy PID control exhibit faster regulation speed and improved stability when subjected to disturbances.展开更多
In order to solve the problem of double motor synchronous error in the hydraulic lifting system of large crane,fuzzy control andneural network control are combined to realize the dynamic correction of PID parameters.W...In order to solve the problem of double motor synchronous error in the hydraulic lifting system of large crane,fuzzy control andneural network control are combined to realize the dynamic correction of PID parameters.With the use of cross-coupling control method in the control process based on the dynamic characteristics of the hydraulic system,both the pressure difference of hydraulic motor outlet and displacement of steel wire rope are regard as control index on the simulation and experimental research toimprove the accuracy of synchronous control.The results show that this control strategy has strong ability of anti-interference,and effectively improving the synchronization control precision of the two motors.展开更多
The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However,...The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.展开更多
In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close t...Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.展开更多
In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neura...In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
Based on the hydraulic bending control system,the electrohydraulic servo pressure control simulation model is built.Taking into account of the inadequacy of P-type immune feedback controller,an improved fuzzy immune P...Based on the hydraulic bending control system,the electrohydraulic servo pressure control simulation model is built.Taking into account of the inadequacy of P-type immune feedback controller,an improved fuzzy immune PID controller is put forward.Drawing on immune feedback principle of biological immune system,the P-type immune feedback controller is connected with conventional PID controller in series and then in parallel with design fuzzy immune PID controller.The controller parameters can be adjusted on line by the rules of immune feedback controller and fuzzy controller.In order to gain the optimal parameters of the controller,the parameters of the controller are off-line optimized by the best multiple optimal model PSO algorithm.The simulation results indicate that the method has characteristics of small overshoot,short adjusting time and strong anti-interference ability and robustness.The quality of the strip shape can be further improved.展开更多
Considering gravity change from ground alignment to space applications, a fuzzy proportional-integral-differential(PID)control strategy is proposed to make the space manipulator track the desired trajectories in diffe...Considering gravity change from ground alignment to space applications, a fuzzy proportional-integral-differential(PID)control strategy is proposed to make the space manipulator track the desired trajectories in different gravity environments. The fuzzy PID controller is developed by combining the fuzzy approach with the PID control method, and the parameters of the PID controller can be adjusted on line based on the ability of the fuzzy controller. Simulations using the dynamic model of the space manipulator have shown the effectiveness of the algorithm in the trajectory tracking problem. Compared with the results of conventional PID control,the control performance of the fuzzy PID is more effective for manipulator trajectory control.展开更多
To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant c...To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant control system, based on the water distribution model, superheat and fuzzy self-adaptive PID (process identity) . A spray cooling system is set up for simulation test in laboratory to test the step signal from the conventional, integral sepa rated and fuzzy self-adaptive PID controllers and the simulation casting. And the on-site test is done in some steel plant. The test results show that the fuzzy self-adaptive PID controller's performance is better than that of the other two controllers, which provides a basis for further study and application.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金The 2023 Scientific and Technological Project in Henan Province of China(232102220098)。
文摘During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy adaptive PID controller(Fuzzy PID)combining PID control with fuzzy logic to achieve self-adaptive adjustment of PID parameters in UAV flight control systems,thereby enhancing system robustness.A quadrotor UAV control model was developed in Simulink,and a Fuzzy PID control system was constructed by integrating fuzzy control logic for simulation and experimental validation.Test results demonstrate that UAVs governed by Fuzzy PID control exhibit faster regulation speed and improved stability when subjected to disturbances.
基金supported by the project of the Central Government Guides Local Science and Technology Development Plans of Inner Mongolia(2022ZY0013)2022 Autonomous Region"Grassland Talents"Young Innovative Talents Level 1(2023QNCXRC04)2022 Western Light Talent Training Program of the Organization Department of the CPC Central Committee"Western Young Scholars"(S24001).
文摘In order to solve the problem of double motor synchronous error in the hydraulic lifting system of large crane,fuzzy control andneural network control are combined to realize the dynamic correction of PID parameters.With the use of cross-coupling control method in the control process based on the dynamic characteristics of the hydraulic system,both the pressure difference of hydraulic motor outlet and displacement of steel wire rope are regard as control index on the simulation and experimental research toimprove the accuracy of synchronous control.The results show that this control strategy has strong ability of anti-interference,and effectively improving the synchronization control precision of the two motors.
基金High Level Talented Person Funded Project of Hebei Province(No.C2013005003)Excellent Experts for Going Abroad Training Program of Hebei Province(No.10215601D)
文摘The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
基金co-supported by the National Natural Science Foundation of China (61175104)National Science and Technology Support Program of China (2012BA114B01)
文摘Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
基金Sponsored by National High-tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Science and Technology Project of Hebei Province of China(10212101D)
文摘In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
基金Item Sponsored by National Natural Science Foundation of China(50534020)National Key Technology Research and Development Program in 11th Five-Year Plan of China(2007BAF02B12)
文摘Based on the hydraulic bending control system,the electrohydraulic servo pressure control simulation model is built.Taking into account of the inadequacy of P-type immune feedback controller,an improved fuzzy immune PID controller is put forward.Drawing on immune feedback principle of biological immune system,the P-type immune feedback controller is connected with conventional PID controller in series and then in parallel with design fuzzy immune PID controller.The controller parameters can be adjusted on line by the rules of immune feedback controller and fuzzy controller.In order to gain the optimal parameters of the controller,the parameters of the controller are off-line optimized by the best multiple optimal model PSO algorithm.The simulation results indicate that the method has characteristics of small overshoot,short adjusting time and strong anti-interference ability and robustness.The quality of the strip shape can be further improved.
基金supported by National High Technology Research and Development Program of China(863 Program)(No.2011AA)
文摘Considering gravity change from ground alignment to space applications, a fuzzy proportional-integral-differential(PID)control strategy is proposed to make the space manipulator track the desired trajectories in different gravity environments. The fuzzy PID controller is developed by combining the fuzzy approach with the PID control method, and the parameters of the PID controller can be adjusted on line based on the ability of the fuzzy controller. Simulations using the dynamic model of the space manipulator have shown the effectiveness of the algorithm in the trajectory tracking problem. Compared with the results of conventional PID control,the control performance of the fuzzy PID is more effective for manipulator trajectory control.
基金Item Sponsored by National High Technology Research and Development Program of China(2007AA04Z194)Major State Basic Research Development Program of China(2007CB613701)+1 种基金National Natural Science Foundation of China(51004032)Fundamental Research Funds for Central Universities of China(NO90409002)
文摘To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant control system, based on the water distribution model, superheat and fuzzy self-adaptive PID (process identity) . A spray cooling system is set up for simulation test in laboratory to test the step signal from the conventional, integral sepa rated and fuzzy self-adaptive PID controllers and the simulation casting. And the on-site test is done in some steel plant. The test results show that the fuzzy self-adaptive PID controller's performance is better than that of the other two controllers, which provides a basis for further study and application.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.