This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ...This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.展开更多
For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. Th...For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.展开更多
An evaluation model of an international venture investment project on the basis of fuzzy matter-element and combined weight methods is introduced. First, the compound fuzzy matter-element of optimal subordinate degree...An evaluation model of an international venture investment project on the basis of fuzzy matter-element and combined weight methods is introduced. First, the compound fuzzy matter-element of optimal subordinate degree is constructed on the principle of the bigger-more-optimal or the less-more-optimal depending on the actual evaluation indicators, and combined with standard fuzzy matter-element to form a difference-square fuzzy matter-element. Secondly, a combined weight is calculated by both information entropy and the expert grading method. Finally, the compound fuzzy matter-element of Euclidian approach degree by M(·,+)method is constituted and used to classify venture investment projects. Based on the model above, six venture investment projects in a company are evaluated, and the results show that the projects are all good, which is demonstrated by the good income of the projects. Therefore, the coincidence of evaluation results and actual operation status indicates that the model is of great value in practical application.展开更多
Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is base...Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is based on the matter-element analysis and combined with the concepts of fuzzy mathematics,which is called the method of fuzzy matter-element analysis.It constructs the compound fuzzy matter element with the investment projects,evaluation factors and their fuzzy value.Through establishing the best subjection degree (fuzzy value),complex fuzzy matter element of relational coefficient and weight aggregation of fuzzy matter-element model,the writer achieves on optimum order of the investment projects according to the calculated relational degree and finds the best project.In this paper,the calculation of weight adopts the analytical hierarchy process method(AHP).Through the actual example,it shows that the model is simple and its calculation is reliable.It is very significant for the engineering evaluated bid and investment decision.展开更多
Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achiev...Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achieving higher clustering accuracy, which few studies have investigated. Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier evaluation and selection algorithm and tested it using real datasets. Our findings indicate that the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clustering.展开更多
[Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a m...[Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a modified method to calculate the superior subordinate degree was put forward according to Hamming distance.Afterwards,a multi-level evaluation model,which contained the assessment indicators about hydrological features,ecological characteristics,environmental traits and service function,was set up based on this method above.Finally,the model was applied in the health assessment of Qinhuai River.[Result] The health state of Qinhuai River was at medium level.This assessment result was consistent with that of comprehensive index method,and it showed that the multi-level fuzzy matter-element model was effective in the assessment of river health.[Conclusion] The research provided an effective method to evaluate the state of river health.展开更多
It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containi...It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containing a variety of technical factors and uncertainties. The optimization is the selection in the constructing time, quantity of equipments and man power. Based on the calculation result of bridge rafts, an evaluating system is established, consisting of index of spacing between interior bays, raft length, truss numbers, operation difficulty and maximal bending stress. A fuzzy matter element model of optimizing selection of bridge rafts was built up by combining quantitative analysis with qualitative analysis. The method of combination weighting was used to calculate the value of weights index to reduce the subjective randomness. The sequence of schemes and the optimization resuh were gained finally based on euclid approach degree. The application result shows that it is simple and practical.展开更多
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
文摘This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.
基金supported by the National Natural Science Foundation of China (No. 41071322, 71031001)
文摘For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.
文摘An evaluation model of an international venture investment project on the basis of fuzzy matter-element and combined weight methods is introduced. First, the compound fuzzy matter-element of optimal subordinate degree is constructed on the principle of the bigger-more-optimal or the less-more-optimal depending on the actual evaluation indicators, and combined with standard fuzzy matter-element to form a difference-square fuzzy matter-element. Secondly, a combined weight is calculated by both information entropy and the expert grading method. Finally, the compound fuzzy matter-element of Euclidian approach degree by M(·,+)method is constituted and used to classify venture investment projects. Based on the model above, six venture investment projects in a company are evaluated, and the results show that the projects are all good, which is demonstrated by the good income of the projects. Therefore, the coincidence of evaluation results and actual operation status indicates that the model is of great value in practical application.
基金Project supported by the National High-Tech Research and Development program of China (863 Program ) (No.2 0 0 2 AA2 Z42 5 1-2 10 0 41) Postdoctoral Scientific Foundation of Northeast Agricultural U niversity. (No. 2 40 0 0 9) and postdoctoral Scien
文摘Owing to overcoming the characteristics that there are many economic and technical indexes which are fuzzy and incompatibility to each other in evaluating investment project,a new method is proposed.The method is based on the matter-element analysis and combined with the concepts of fuzzy mathematics,which is called the method of fuzzy matter-element analysis.It constructs the compound fuzzy matter element with the investment projects,evaluation factors and their fuzzy value.Through establishing the best subjection degree (fuzzy value),complex fuzzy matter element of relational coefficient and weight aggregation of fuzzy matter-element model,the writer achieves on optimum order of the investment projects according to the calculated relational degree and finds the best project.In this paper,the calculation of weight adopts the analytical hierarchy process method(AHP).Through the actual example,it shows that the model is simple and its calculation is reliable.It is very significant for the engineering evaluated bid and investment decision.
文摘Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achieving higher clustering accuracy, which few studies have investigated. Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier evaluation and selection algorithm and tested it using real datasets. Our findings indicate that the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clustering.
基金Supported by National Natural Science Foundation of China (50879018)Innovation Project of Jiangsu Province in 2008+1 种基金Special Fee for Scientific Research in Public Welfare Industry of Ministry of Water Resources (201001030)Special Fee of Key National Laboratories (1069-50987112)
文摘[Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a modified method to calculate the superior subordinate degree was put forward according to Hamming distance.Afterwards,a multi-level evaluation model,which contained the assessment indicators about hydrological features,ecological characteristics,environmental traits and service function,was set up based on this method above.Finally,the model was applied in the health assessment of Qinhuai River.[Result] The health state of Qinhuai River was at medium level.This assessment result was consistent with that of comprehensive index method,and it showed that the multi-level fuzzy matter-element model was effective in the assessment of river health.[Conclusion] The research provided an effective method to evaluate the state of river health.
文摘It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containing a variety of technical factors and uncertainties. The optimization is the selection in the constructing time, quantity of equipments and man power. Based on the calculation result of bridge rafts, an evaluating system is established, consisting of index of spacing between interior bays, raft length, truss numbers, operation difficulty and maximal bending stress. A fuzzy matter element model of optimizing selection of bridge rafts was built up by combining quantitative analysis with qualitative analysis. The method of combination weighting was used to calculate the value of weights index to reduce the subjective randomness. The sequence of schemes and the optimization resuh were gained finally based on euclid approach degree. The application result shows that it is simple and practical.
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.