This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the le...This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.展开更多
With the development of urbanization, underground commercial buildings (UCB) are facing severe challenges in fire safety management due to their unique structure and environmental characteristics. This study construct...With the development of urbanization, underground commercial buildings (UCB) are facing severe challenges in fire safety management due to their unique structure and environmental characteristics. This study constructed a fire casualty risk assessment model that combines fuzzy fault tree analysis (FFTA) and Bayesian network (BN), aiming to quantitatively analyze the dynamic risk of casualties caused by fires in UCB. Fault tree analysis (FTA) is used to comprehensively identify the key risk factors leading to fire casualties in UCB, involving 55 basic events, and the occurrence probability of basic events was calculated via a fuzzy set. The FTA model was transformed into a BN structure via conversion rules and was optimized. The optimized BN model can dynamically analyze the specific fire evolution process and quantify the impacts of different emergency response measures on fire control, evacuation, and casualties. Innovatively, from the post-incident (a historical case study) and pre-incident (two potentially different fire scenarios) perspectives, various emergency plans were scientifically evaluated, providing reasonable suggestions and decision support for emergency management. The results indicate that the model can effectively guide the formulation of fire prevention and control strategies and emergency response work of UCB and provide an innovative tool for improving the safety of UCB and reducing fire accidents and casualties.展开更多
文摘This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.
基金sponsored by the National Natural Science Foundation of China(No.52374208)the Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province(No.23KJA620002)the Qinglan Project of Jiangsu Province and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘With the development of urbanization, underground commercial buildings (UCB) are facing severe challenges in fire safety management due to their unique structure and environmental characteristics. This study constructed a fire casualty risk assessment model that combines fuzzy fault tree analysis (FFTA) and Bayesian network (BN), aiming to quantitatively analyze the dynamic risk of casualties caused by fires in UCB. Fault tree analysis (FTA) is used to comprehensively identify the key risk factors leading to fire casualties in UCB, involving 55 basic events, and the occurrence probability of basic events was calculated via a fuzzy set. The FTA model was transformed into a BN structure via conversion rules and was optimized. The optimized BN model can dynamically analyze the specific fire evolution process and quantify the impacts of different emergency response measures on fire control, evacuation, and casualties. Innovatively, from the post-incident (a historical case study) and pre-incident (two potentially different fire scenarios) perspectives, various emergency plans were scientifically evaluated, providing reasonable suggestions and decision support for emergency management. The results indicate that the model can effectively guide the formulation of fire prevention and control strategies and emergency response work of UCB and provide an innovative tool for improving the safety of UCB and reducing fire accidents and casualties.