期刊文献+
共找到839篇文章
< 1 2 42 >
每页显示 20 50 100
Rotation Angle Control Strategy for Telescopic Flexible Manipulator Based on a Combination of Fuzzy Adjustment and RBF Neural Network 被引量:8
1
作者 Dongyang Shang Xiaopeng Li +2 位作者 Meng Yin Fanjie Li Bangchun Wen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期203-226,共24页
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W... The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles. 展开更多
关键词 Flexible manipulator rbf neural network fuzzy control Dynamic uncertainty
在线阅读 下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
2
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 Parallel manipulator Adaptive control fuzzy neural network algorithm SIMULATION
在线阅读 下载PDF
Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm 被引量:1
3
作者 崔平远 Yang Guojun 《High Technology Letters》 EI CAS 2001年第1期63-66,共4页
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th... The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm. 展开更多
关键词 Inverse kinematics Neural networks fuzzy control Genetic algorithm Fitness function
在线阅读 下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
4
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss pi controller fuzzy logic controller artificial neural network controller
在线阅读 下载PDF
The study of film tension control system based on RBF neural network and PID
5
作者 Jia Chunying Ding Zhigang Chen Yuchen 《International English Education Research》 2014年第8期82-85,共4页
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica... In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID. 展开更多
关键词 control piD algorithm Jacobian information identification rbf neural network Matlab
在线阅读 下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
6
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
Fuzzy Control System of Hydraulic Roll Bending Based on Genetic Neural Network 被引量:2
7
作者 JIAChun-yu LIUHong-min ZHOUHui-feng 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第3期22-27,共6页
For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system ... For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy. 展开更多
关键词 genetic algorithm neural network fuzzy control hydraulic roll bending SHAPE
在线阅读 下载PDF
HPSO-based fuzzy neural network control for AUV 被引量:1
8
作者 Lei ZHANG Yongjie PANG Yumin SU Yannan LIANG 《控制理论与应用(英文版)》 EI 2008年第3期322-326,共5页
A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimiz... A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs. 展开更多
关键词 Autonomous underwater vehicle fuzzy neural network Model reference adaptive control Particle swarm optimization algorithm Immune theory
在线阅读 下载PDF
基于改进北方苍鹰算法的RBF-PID海参热泵干燥温度控制
9
作者 肖扬 李占英 张鹏飞 《大连工业大学学报》 2025年第1期73-78,共6页
针对海参干燥过程中温度控制不够精准和能耗高的问题,提出了基于改进的北方苍鹰算法、径向基函数和比例-积分-微分算法的温度控制算法及热泵干燥系统设计。针对传统北方苍鹰算法初始解随机分布不均匀和容易陷入局部最优的问题,提出了在... 针对海参干燥过程中温度控制不够精准和能耗高的问题,提出了基于改进的北方苍鹰算法、径向基函数和比例-积分-微分算法的温度控制算法及热泵干燥系统设计。针对传统北方苍鹰算法初始解随机分布不均匀和容易陷入局部最优的问题,提出了在传统北方苍鹰算法加入Tent混沌映射,优化初始种群均匀性、遍历性,在第二阶段采用非线性自适应半径,并在第二阶段结束后加入差分进化算法以增加个体搜索广度的方法,增强了算法搜索最优解的能力。采用改进的北方苍鹰算法(INGO)优化RBF神经网络参数,搭建了INGO-RBF-PID温度控制算法。消融实验结果表明,在2%误差范围内,该算法的稳定性和快速性均优于传统的PID、RBF-PID和未改进的NGO-RBF-PID。在S7-1200 PLC中进行仿真验证,该算法对于温度控制系统具有较好的性能,可为海参干燥系统提供支持。 展开更多
关键词 北方苍鹰算法 rbf神经网络 piD控制 可编程控制器
在线阅读 下载PDF
基于IWOA-RBF神经网络预测的拖拉机线控液压转向系统传递函数参数辨识
10
作者 吕华伟 邓晓亭 +2 位作者 黄薛凯 孙晓旭 鲁植雄 《南京农业大学学报》 北大核心 2026年第1期197-213,共17页
[目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使... [目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使用鲸鱼优化算法(WOA)对线控液压转向系统的试验数据进行参数辨识,从而获得系统传递函数参数。为补全线控液压转向系统适用工况,采用RBF神经网络预测法对辨识得到的传递函数进行工况预测,得到线控液压转向系统动态传递函数。[结果]对辨识结果进行了试验对比验证,通过改进的鲸鱼优化算法优化得到的线控液压转向系统传递函数,在右转时与试验数据的均方根误差平均值为0.001334,在左转时与试验数据的均方根误差平均值为0.013440,通过RBF神经网络预测得到的线控液压转向系统全工况动态传递函数与试验数据的均方根误差在0.1左右。[结论]本文提出的动态模型可以精确描述线控液压转向模型的运动学特性,建模方法可行,对提高线控液压转向系统控制稳定性有重要的指导意义。 展开更多
关键词 拖拉机 线控液压转向 鲸鱼优化算法(WOA) 参数辨识 rbf神经网络 工况预测
在线阅读 下载PDF
Traffic Signals Control with Adaptive Fuzzy Controller in Urban Road Network 被引量:1
11
作者 李艳 樊晓平 《Journal of Donghua University(English Edition)》 EI CAS 2008年第6期710-717,共8页
An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuz... An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one. 展开更多
关键词 traffic signal control urban road network fuzzy logic adaptive algorithm traffic interaction
在线阅读 下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
12
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
在线阅读 下载PDF
基于RBF模糊PID的婴儿辐射保暖台校准装置的研制
13
作者 石良喜 朱健聪 +3 位作者 梁兆斌 潘旭枫 廖炫开 赵晨光 《计量与测试技术》 2025年第11期146-150,共5页
婴儿辐射保暖台校准装置的温度控制系统具有时变性强、快速响应及稳定性高等特点,但常规PID控制算法难以达到理想效果。本文基于其温度参数校准需求,结合温度控制策略,引入TEC半导体片,采用直流输出控温方案,设计了基于模糊算法与RBF神... 婴儿辐射保暖台校准装置的温度控制系统具有时变性强、快速响应及稳定性高等特点,但常规PID控制算法难以达到理想效果。本文基于其温度参数校准需求,结合温度控制策略,引入TEC半导体片,采用直流输出控温方案,设计了基于模糊算法与RBF神经网络算法优化的PID控制器,实现对PID参数的实时调整与温度控制系统的在线最优整定。同时,研制了一种快速高效的恒温校准装置,并通过不确定度分析,验证了该装置的可靠性和科学性。 展开更多
关键词 婴儿辐射保暖台校准装置 温度控制策略 TEC 模糊rbf神经网络 不确定度
在线阅读 下载PDF
A Direct Feedback Control Based on Fuzzy Recurrent Neural Network
14
作者 李明 马小平 《Journal of China University of Mining and Technology》 2002年第2期215-218,共4页
A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algor... A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances . 展开更多
关键词 fuzzy neural network genetic algorithm neural network control
在线阅读 下载PDF
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
15
作者 沈承 Cao +2 位作者 Guangyi Zhu Xinjian 《High Technology Letters》 EI CAS 2002年第2期76-82,共7页
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial... Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations. 展开更多
关键词 Molten Carbonate Fuel Cells (MCFC) Radial Basis Function (rbf) fuzzy neural networks control modelling
在线阅读 下载PDF
基于模糊自调整PID的大管径输水管道流量控制方法
16
作者 何领军 张宇 《液压气动与密封》 2026年第1期47-53,共7页
大管径输水管道非恒定流量状态导致具体的流量偏差存在波动,以固定的PID系数对其进行控制无法适应波动的流量偏差,导致输水管道下游水位与设计值拟合程度较低,为此,提出基于模糊自调整PID的大管径输水管道流量控制方法。引入微分方程对... 大管径输水管道非恒定流量状态导致具体的流量偏差存在波动,以固定的PID系数对其进行控制无法适应波动的流量偏差,导致输水管道下游水位与设计值拟合程度较低,为此,提出基于模糊自调整PID的大管径输水管道流量控制方法。引入微分方程对大管径输水管道非恒定流量下水体的运动方程和连续方程进行表征后,结合管道内流速及水头的变化规律,求解流量参数。将具体的流量偏差作为模糊自调整PID的输出参量,将闸门开度作为控制量,通过RBF神经网络整定PID系数,输出针对具体流量偏差的控制参数。测试结果表明,所提方法在输出收敛的PID系数基础上,能够输出与设计值高度拟合的流量,下游水位与设计值达到了高度拟合。 展开更多
关键词 模糊自调整piD 大管径输水管道 流量控制 微分方程 非恒定流量 rbf神经网络 piD系数
在线阅读 下载PDF
基于模糊RBF神经网络的PID及其应用 被引量:20
17
作者 欧阳磊 黄友锐 黄宜庆 《计算机工程》 CAS CSCD 北大核心 2008年第22期231-233,共3页
针对传统的PID控制器参数固定而导致在控制中效果差的问题,提出一种基于模糊RBF神经网络智能PID控制器的设计方法。该方法结合了模糊控制的推理能力强与神经网络学习能力强的特点,将模糊控制与RBF神经网络相结合以在线调整PID控制器参数... 针对传统的PID控制器参数固定而导致在控制中效果差的问题,提出一种基于模糊RBF神经网络智能PID控制器的设计方法。该方法结合了模糊控制的推理能力强与神经网络学习能力强的特点,将模糊控制与RBF神经网络相结合以在线调整PID控制器参数,整定出一组适合于控制对象的kp,ki,kd参数。将算法运用到电机控制系统的PID参数寻优中,仿真结果表明基于此算法设计的PID控制器改善了电机控制系统的动态性能和稳定性。 展开更多
关键词 模糊控制 rbf神经网络 piD控制 电机控制系统
在线阅读 下载PDF
基于模糊RBF神经网络的智能PID控制 被引量:19
18
作者 胥良 郭林 +2 位作者 梁亚 杨金龙 张卫芳 《工业仪表与自动化装置》 2015年第6期67-69,75,共4页
针对常规PID控制参数变化系统效果不佳的缺点,设计一种利用智能控制理论RBF神经网络与模糊控制技术相融合的新型智能PID控制方法[1]。该控制方法将系统的输入误差及其变化率进行模糊化后,再利用RBF神经网络算法对PID控制参数进行在线学... 针对常规PID控制参数变化系统效果不佳的缺点,设计一种利用智能控制理论RBF神经网络与模糊控制技术相融合的新型智能PID控制方法[1]。该控制方法将系统的输入误差及其变化率进行模糊化后,再利用RBF神经网络算法对PID控制参数进行在线学习、运算和整定[2]。MATLAB仿真结果表明,基于上述的PID控制方法能够克服传统PID控制器的局限性,具有较高的控制精度,较好的动态品质及较强的鲁棒性。 展开更多
关键词 rbf神经网络 模糊算法 piD控制
在线阅读 下载PDF
基于改进型RBF神经网络多变量系统的PID控制 被引量:21
19
作者 李绍铭 刘寅虎 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期53-57,共5页
针对工业控制中多输入多输出非线性时变系统,提出了基于改进型RBF神经网络的智能PID控制方法.采用最近邻聚类算法在线构造RBF神经网络辨识器并在线辨识被控对象,对PID控制器参数进行在线调整,实现了多变量非线性时变系统的解耦控制.仿... 针对工业控制中多输入多输出非线性时变系统,提出了基于改进型RBF神经网络的智能PID控制方法.采用最近邻聚类算法在线构造RBF神经网络辨识器并在线辨识被控对象,对PID控制器参数进行在线调整,实现了多变量非线性时变系统的解耦控制.仿真结果表明,控制器能根据系统运行状态获得对应于某种最优控制规律下的PID参数,解耦后的系统具有较好的动态和静态性能,与常规RBF神经网络PID控制方法相比,该方法具有控制精度高、响应速度快的优点,并且具备较强的自适应性和鲁棒性. 展开更多
关键词 改进型rbf神经网络 非线性时变系 piD控制 最近邻聚类算法 解耦控制
在线阅读 下载PDF
基于动态RBF神经网络在线辨识的单神经元PID控制 被引量:22
20
作者 刘寅虎 李绍铭 《系统仿真学报》 CAS CSCD 北大核心 2006年第z2期804-807,共4页
针对工业控制领域中复杂非线性时变系统,提出了基于动态RBF神经网络辨识的单神经元PID控制方法。采用动态RBF神经网络辨识器在线辨识系统模型,获得PID参数在线调整信息,并由单神经元PID控制器完成控制器参数的在线自整定,实现系统的智... 针对工业控制领域中复杂非线性时变系统,提出了基于动态RBF神经网络辨识的单神经元PID控制方法。采用动态RBF神经网络辨识器在线辨识系统模型,获得PID参数在线调整信息,并由单神经元PID控制器完成控制器参数的在线自整定,实现系统的智能控制。仿真结果表明,与常规RBF神经网络辨识的PID控制方法相比,该方法具有控制精度高、响应速度快的优点,并且具备较强的自适应性和鲁棒性。 展开更多
关键词 rbf神经网络 单神经元 比例-积分-微分(piD) 非线性控制 最近邻聚类算法
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部