This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation...This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.展开更多
Cardiovascular disease(CVD)is a major global health challenge,which causes significant illness and death worldwide.These include a range of conditions that affect the heart and blood vessels,including coro-nary artery...Cardiovascular disease(CVD)is a major global health challenge,which causes significant illness and death worldwide.These include a range of conditions that affect the heart and blood vessels,including coro-nary artery disease,stroke,peripheral artery disease,and heart failure.Despite advances in medicine and healthcare delivery,CVD continues to have a serious impact on individuals,families,and the healthcare system.This review begins by delineating the merits and demerits of commonly employed synthetic and natural materials for artificial blood vessels.It delves into various techniques commonly employed in the fabrication of artificial blood vessels,encompassing advanced textile technologies,electrospinning,ther-mally induced phase separation,and 3D printing.The review critically analyzes the attributes of different preparation methodologies alongside the latest advancements in research.The review also outlines the requisite performance requirements for artificial blood vessels,which encompass robust mechanical prop-erties,appropriate porosity,exceptional compatibility,and antibacterial attributes.It provides a succinct overview of ongoing effort s in vascular functionalization,particularly emphasizing thrombus mitigation,promotion of endothelialization,and enhancement of nitric oxide production.The review finally encap-sulates the primary challenges confronting vascular grafts and prospective avenues for future research.展开更多
Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of ...Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.展开更多
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S...As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.展开更多
Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from t...Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.展开更多
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an...Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.展开更多
Soil multifunctionality represents a range of soil processes driven by the interactions between soil abiotic and biotic components.As a group of ubiquitous fungi that form mutualistic symbiotic associations with a vas...Soil multifunctionality represents a range of soil processes driven by the interactions between soil abiotic and biotic components.As a group of ubiquitous fungi that form mutualistic symbiotic associations with a vast array of terrestrial plants,arbuscular mycorrhizal(AM)fungi may play a critical role in maintaining soil multifunctionality,but the characteristics of their contributions remain to be unraveled.This mini review aims to disentangle the contributions of AM fungi to soil multifunctionality.We provide a framework of concepts about AM fungi making crucial contributions to maintaining multiple soil functions,including primary productivity,nutrient cycling,water regulation and purification,carbon and climate regulation,habitat for biodiversity,disease and pest control,and pollutant degradation and detoxification,via a variety of pathways,particularly contributing to soil and plant health.This review contends that AM fungi,as a keystone component of soil microbiome,can govern soil multifunctionality,ultimately promoting ecosystem services.展开更多
构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构...构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。展开更多
文摘This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.
基金the National Natural Science Foundation of China(No.82374295)the National Key R&D Program of China(No.2021YFE0111100)+1 种基金the Science and Technol-ogy Partnership Program by the Ministry of Science and Technol-ogy of China(No.KY202201002)the Jiangsu Provincial De-partment of Science and Technology(No.BZ2022017).
文摘Cardiovascular disease(CVD)is a major global health challenge,which causes significant illness and death worldwide.These include a range of conditions that affect the heart and blood vessels,including coro-nary artery disease,stroke,peripheral artery disease,and heart failure.Despite advances in medicine and healthcare delivery,CVD continues to have a serious impact on individuals,families,and the healthcare system.This review begins by delineating the merits and demerits of commonly employed synthetic and natural materials for artificial blood vessels.It delves into various techniques commonly employed in the fabrication of artificial blood vessels,encompassing advanced textile technologies,electrospinning,ther-mally induced phase separation,and 3D printing.The review critically analyzes the attributes of different preparation methodologies alongside the latest advancements in research.The review also outlines the requisite performance requirements for artificial blood vessels,which encompass robust mechanical prop-erties,appropriate porosity,exceptional compatibility,and antibacterial attributes.It provides a succinct overview of ongoing effort s in vascular functionalization,particularly emphasizing thrombus mitigation,promotion of endothelialization,and enhancement of nitric oxide production.The review finally encap-sulates the primary challenges confronting vascular grafts and prospective avenues for future research.
基金supported by the National Natural Science Foundation of China(No.42007428)the National Forage Industry Technology System Program of China(No.CARS34)+1 种基金the Key Research and Development Program of Shaanxi,China(No.2022SF-285)Shaanxi Province Forestry Science and Technology Innovation Program,China(No.SXLK2022-02-14)。
文摘Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.
基金supported by the National Science Foundation of China Project(52072215,U1964203,52242213,and 52221005)National Key Research and Development(R&D)Program of China(2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobility。
文摘As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.
基金Key Project of the Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration under Grant Nos.2020EEEVL0502 and 2019EEEVL0304。
文摘Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.
基金partially funded by the Ministry of AgricultureNature and Food Quality(project number BO-55-001-015)partly by“Vereniging Diervoederonderzoek Nederland”。
文摘Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.
基金supported by the National Natural Science Foundation of China(No.41471395)Shandong Provincial Key Research and Development Program of China(No.2019GSF109008)。
文摘Soil multifunctionality represents a range of soil processes driven by the interactions between soil abiotic and biotic components.As a group of ubiquitous fungi that form mutualistic symbiotic associations with a vast array of terrestrial plants,arbuscular mycorrhizal(AM)fungi may play a critical role in maintaining soil multifunctionality,but the characteristics of their contributions remain to be unraveled.This mini review aims to disentangle the contributions of AM fungi to soil multifunctionality.We provide a framework of concepts about AM fungi making crucial contributions to maintaining multiple soil functions,including primary productivity,nutrient cycling,water regulation and purification,carbon and climate regulation,habitat for biodiversity,disease and pest control,and pollutant degradation and detoxification,via a variety of pathways,particularly contributing to soil and plant health.This review contends that AM fungi,as a keystone component of soil microbiome,can govern soil multifunctionality,ultimately promoting ecosystem services.
文摘构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。