Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop...Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh...The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.展开更多
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functio...Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tum...In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups in...Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.展开更多
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancem...2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancements in DDQ-catalyzed C—H bonds functionalization. Moreover, the challenging C—H functionalization of electron-deficient arenes has been achieved through the merger of electrochemical DDQ catalysis and photoirradiation. In addition, the synthetic utility of electrophotochemical DDQ catalysis was further demonstrated by the nucleophilic aromatic substitution (SNAr) reaction of unactivated aryl fluorides. The recent developments in electro- and electrophotochemical DDQ-catalyzed C—H/C—F func- tionalizations with attention to their strategies and mechanistic insights are summarized. It is hoped that this not only deepens the understanding of this field, but also helps relevant researchers expand the application scope of DDQ catalysis.展开更多
Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excel...Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.展开更多
The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for...The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.展开更多
BACKGROUND The Rome Foundation’s questionnaires,including the latest version,Rome IV diagnostic criteria since 2016,are widely used globally for diagnosing functional gastrointestinal disorders(FGIDs).However,a tailo...BACKGROUND The Rome Foundation’s questionnaires,including the latest version,Rome IV diagnostic criteria since 2016,are widely used globally for diagnosing functional gastrointestinal disorders(FGIDs).However,a tailored Thai version for diagnosing FGIDs in neonates and toddlers is yet to be developed.AIM To develop and validate the Thai version of the Rome IV diagnostic questionnaire for FGIDs in neonates and toddlers.METHODS This study was conducted at a tertiary hospital in Bangkok.The Rome IV diagnostic questionnaire for neonates and toddlers was translated into Thai following Rome Foundation guidelines.Validity was assessed using item-objective congruence.The final version was administered to 65 caregivers of children under 4 years.Reliability was evaluated using Cronbach’s alpha and intraclass correlation coefficient based on test-retest responses collected over a 4-15 day interval.RESULTS A total of 58 complete questionnaires were returned.The median interval between the first and second time was 7 days(range:4 days to 15 days).The item-objective congruence index for the Thai-adapted Rome IV diagnostic questionnaire was 0.74.Internal consistency,as indicated by Cronbach’s alpha,was 0.753,0.712,and 0.750 for the three respective sections.The intraclass correlation coefficients for test-retest reliability were 0.782,0.782,and 0.807.CONCLUSION The Thai Rome IV diagnostic questionnaire for FGIDs in neonates and toddlers demonstrates acceptable validity and reliability,supporting its use in future clinical and research applications.展开更多
The rich club,as a community of highly interconnected nodes,serves as the topological center of the network.However,the similarities and differences in how the rich club supports functional integration and segregation...The rich club,as a community of highly interconnected nodes,serves as the topological center of the network.However,the similarities and differences in how the rich club supports functional integration and segregation in the brain across different species remain unknown.In this study,we first detected and validated the rich club in the structural networks of mouse,monkey,and human brains using neuronal tracing or diffusion magnetic resonance imaging data.Further,we assessed the role of rich clubs in functional integration,segregation,and balance using quantitative metrics.Our results indicate that the presence of a rich club facilitates whole-brain functional integration in all three species,with the functional networks of higher species exhibiting greater integration.These findings are expected to help to understand the relationship between brain structure and function from the perspective of brain evolution.展开更多
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
BACKGROUND Overweight children exhibit a higher prevalence of functional gastrointestinal disorders compared with their normal-weight peers,yet the underlying reasons remain unclear.Gastrointestinal motility,a key pat...BACKGROUND Overweight children exhibit a higher prevalence of functional gastrointestinal disorders compared with their normal-weight peers,yet the underlying reasons remain unclear.Gastrointestinal motility,a key pathophysiological factor in functional gastrointestinal disorders,may be influenced by body mass index(BMI).AIM To evaluate the impact of BMI on gastric motility parameters in children with functional abdominal pain disorders(FAPDs).METHODS We assessed gastric motility in 176 children with FAPDs(61.4%females,mean age 7.94 years,SD 1.96 years)and 63 healthy controls(57.1%females,mean age 9.17 years,SD 1.90 years)at the Gastroenterology Research Laboratory,University of Kelaniya,Sri Lanka.FAPDs were diagnosed and subtyped using the Rome IV criteria:Functional abdominal pain 97 patients;irritable bowel syndrome 39 patients,functional dyspepsia(FD)25 patients;and abdominal migraine 15 patients.Gastric motility was measured using a validated ultrasound method.Weight and height were measured using sensitive standard scales.RESULTS The BMIs of children with FAPDs and controls were 15.04 and 15.46 kg/m^(2),respectively(P=0.33).Fasting antral area(FAA)and antral area at 1 min(AA1)and 15 min(AA15)were significantly greater in patients with FAPD with a higher BMI(2.71 cm^(2),12.57 cm^(2),and 7.19 cm^(2),respectively)compared with those with a lower BMI(2.12 cm^(2),10.68 cm^(2),and 6.13 cm^(2),respectively)(P<0.01).BMI positively correlated with FAA and AA15(r=0.18 and r=0.19,respectively)(P<0.01)in those with FAPDs.In controls,only AA1 was greater in the higher BMI group(12.51 cm^(2)vs 9.93 cm^(2))and had a positive correlation(r=0.33)(P≤0.01).Subgroup analysis revealed that in patients with FD,BMI negatively correlated with gastric emptying rate(GER)(r=-0.59)and antral motility index(MI)(r=-0.49),while in functional abdominal pain,MI positively correlated(r=0.25)with BMI(P≤0.01).CONCLUSION In children with FAPDs,higher BMI was associated with increased gastric antral distention during fasting and postprandial periods(as indicated by FAA,AA1,and AA15)but not with contractility and transit(MI,GER).However,in the FD subgroup,high BMI correlated with reduced GER and MI.This indicates the possible role of BMI in gastric hypomotility and the pathophysiology of FD.These findings underscore the importance of lifestyle and dietary interventions aimed at optimizing BMI in the management of FAPDs,particularly FD.展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density function...Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.展开更多
文摘Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by ANR(ANR-21CE16-0008-01)ANR(ANR-21-CE16-0008-02 and ANR-23CE52-0007)+1 种基金UNADEV(A22018CS)(to HN)UNADEV(A22020CS)(to SB)。
文摘The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.
基金supported by the National Natural Science Foundation of China,No.82371399(to YY)the Natural Science Foundation of Jiangsu Province,No.BK20221206(to YY)+1 种基金the Young Elite Scientists Sponsorship Program of Jiangsu Province,No.TJ-2022-028(to YY)the Scientific Research Program of Wuxi Health Commission,No.Z202302(to LY)。
文摘Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.
文摘In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.
文摘2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancements in DDQ-catalyzed C—H bonds functionalization. Moreover, the challenging C—H functionalization of electron-deficient arenes has been achieved through the merger of electrochemical DDQ catalysis and photoirradiation. In addition, the synthetic utility of electrophotochemical DDQ catalysis was further demonstrated by the nucleophilic aromatic substitution (SNAr) reaction of unactivated aryl fluorides. The recent developments in electro- and electrophotochemical DDQ-catalyzed C—H/C—F func- tionalizations with attention to their strategies and mechanistic insights are summarized. It is hoped that this not only deepens the understanding of this field, but also helps relevant researchers expand the application scope of DDQ catalysis.
基金the National Natural Science Foundation of China(No.22271154)the Science Fund for Distinguished Young Scholars of Jiangsu Province(No.BK20240078).
文摘Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.
文摘The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.
基金Supported by Ratchadapiseksompotch Fund,Graduate Affairs,Faculty of Medicines,Chulalongkorn University,No.2566-077,No.2566-078,and No.2566-079and The Royal College of Pediatricians of Thailand,No.2566.2.2.
文摘BACKGROUND The Rome Foundation’s questionnaires,including the latest version,Rome IV diagnostic criteria since 2016,are widely used globally for diagnosing functional gastrointestinal disorders(FGIDs).However,a tailored Thai version for diagnosing FGIDs in neonates and toddlers is yet to be developed.AIM To develop and validate the Thai version of the Rome IV diagnostic questionnaire for FGIDs in neonates and toddlers.METHODS This study was conducted at a tertiary hospital in Bangkok.The Rome IV diagnostic questionnaire for neonates and toddlers was translated into Thai following Rome Foundation guidelines.Validity was assessed using item-objective congruence.The final version was administered to 65 caregivers of children under 4 years.Reliability was evaluated using Cronbach’s alpha and intraclass correlation coefficient based on test-retest responses collected over a 4-15 day interval.RESULTS A total of 58 complete questionnaires were returned.The median interval between the first and second time was 7 days(range:4 days to 15 days).The item-objective congruence index for the Thai-adapted Rome IV diagnostic questionnaire was 0.74.Internal consistency,as indicated by Cronbach’s alpha,was 0.753,0.712,and 0.750 for the three respective sections.The intraclass correlation coefficients for test-retest reliability were 0.782,0.782,and 0.807.CONCLUSION The Thai Rome IV diagnostic questionnaire for FGIDs in neonates and toddlers demonstrates acceptable validity and reliability,supporting its use in future clinical and research applications.
基金supported by STI2030-Major Projects(2021ZD0200200)the National Natural Science Foundation of China(62327805 and 82151307)+1 种基金the Equipment Development Project of the Chinese Academy of Sciences(YJKYYQ20190040)the Science and Technology Innovation Program of Hunan Province(2024RC4028).
文摘The rich club,as a community of highly interconnected nodes,serves as the topological center of the network.However,the similarities and differences in how the rich club supports functional integration and segregation in the brain across different species remain unknown.In this study,we first detected and validated the rich club in the structural networks of mouse,monkey,and human brains using neuronal tracing or diffusion magnetic resonance imaging data.Further,we assessed the role of rich clubs in functional integration,segregation,and balance using quantitative metrics.Our results indicate that the presence of a rich club facilitates whole-brain functional integration in all three species,with the functional networks of higher species exhibiting greater integration.These findings are expected to help to understand the relationship between brain structure and function from the perspective of brain evolution.
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金Supported by The University of Kelaniya,Sri Lanka,Research Council Grant No.G23.
文摘BACKGROUND Overweight children exhibit a higher prevalence of functional gastrointestinal disorders compared with their normal-weight peers,yet the underlying reasons remain unclear.Gastrointestinal motility,a key pathophysiological factor in functional gastrointestinal disorders,may be influenced by body mass index(BMI).AIM To evaluate the impact of BMI on gastric motility parameters in children with functional abdominal pain disorders(FAPDs).METHODS We assessed gastric motility in 176 children with FAPDs(61.4%females,mean age 7.94 years,SD 1.96 years)and 63 healthy controls(57.1%females,mean age 9.17 years,SD 1.90 years)at the Gastroenterology Research Laboratory,University of Kelaniya,Sri Lanka.FAPDs were diagnosed and subtyped using the Rome IV criteria:Functional abdominal pain 97 patients;irritable bowel syndrome 39 patients,functional dyspepsia(FD)25 patients;and abdominal migraine 15 patients.Gastric motility was measured using a validated ultrasound method.Weight and height were measured using sensitive standard scales.RESULTS The BMIs of children with FAPDs and controls were 15.04 and 15.46 kg/m^(2),respectively(P=0.33).Fasting antral area(FAA)and antral area at 1 min(AA1)and 15 min(AA15)were significantly greater in patients with FAPD with a higher BMI(2.71 cm^(2),12.57 cm^(2),and 7.19 cm^(2),respectively)compared with those with a lower BMI(2.12 cm^(2),10.68 cm^(2),and 6.13 cm^(2),respectively)(P<0.01).BMI positively correlated with FAA and AA15(r=0.18 and r=0.19,respectively)(P<0.01)in those with FAPDs.In controls,only AA1 was greater in the higher BMI group(12.51 cm^(2)vs 9.93 cm^(2))and had a positive correlation(r=0.33)(P≤0.01).Subgroup analysis revealed that in patients with FD,BMI negatively correlated with gastric emptying rate(GER)(r=-0.59)and antral motility index(MI)(r=-0.49),while in functional abdominal pain,MI positively correlated(r=0.25)with BMI(P≤0.01).CONCLUSION In children with FAPDs,higher BMI was associated with increased gastric antral distention during fasting and postprandial periods(as indicated by FAA,AA1,and AA15)but not with contractility and transit(MI,GER).However,in the FD subgroup,high BMI correlated with reduced GER and MI.This indicates the possible role of BMI in gastric hypomotility and the pathophysiology of FD.These findings underscore the importance of lifestyle and dietary interventions aimed at optimizing BMI in the management of FAPDs,particularly FD.
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
基金supported by the National Natural Science Foundation of China(Nos.22393912,22425301,22373091,22173088)the AI for Science Foundation of Fudan University(No.Fudan X24AI023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450101).
文摘Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.