期刊文献+
共找到13,247篇文章
< 1 2 250 >
每页显示 20 50 100
A study of connectivity features analysis in brain function network for dementia recognition
1
作者 Siying Li Peng Wang +6 位作者 Zhenfeng Li Lidong Du Xianxiang Chen Jie Sun Libin Jiang Gang Cheng Zhen Fang 《Nanotechnology and Precision Engineering》 2025年第1期79-93,共15页
Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuro... Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity. 展开更多
关键词 ELECTROENCEPHALOGRAPHY Brain function network Machine learning Feature selection Dementia recognition
暂未订购
Application of Radial Basis Function Network in Sensor Failure Detection
2
作者 钮永胜 赵新民 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期70-76,共7页
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig... Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine. 展开更多
关键词 sensor failure failure detection radial basis function network(BRFN) on line learning
在线阅读 下载PDF
Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization 被引量:16
3
作者 ZHAO Min CUI Wei-cheng 《Journal of Marine Science and Application》 2007年第3期24-32,共9页
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora... Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. 展开更多
关键词 multidisciplinary design optimization (MDO) collaborative optimization (CO) optimal Latin hypercube design radial basis function network APPROXIMATION
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
4
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control Radial basis function networks Recursive least squares.
在线阅读 下载PDF
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:2
5
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack Radial basis function network Pattern recognition neural network Machine learning
在线阅读 下载PDF
Radial Basis Function Networks Applied in Bacterial Classification Based on MALDI-TOF-MS
6
作者 HARRINGTON Peter de B. VOORHEES Kent J. REES Jon 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期453-457,共5页
The radial basis function networks were applied to bacterial classification based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) data. The classification of bacteri... The radial basis function networks were applied to bacterial classification based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) data. The classification of bacteria cultured at different time was discussed and the effect of the network parameters on the classification was investigated. The cross-validation method was used to test the trained networks. The correctness of the classification of different bacteria investigated changes in a wide range from 61.5% to 92.8%. Owing to the complexity of biological effects in bacterial growth, the more rigid control of bacterial culture conditions seems to be a critical factor for improving the rate of correctness for bacterial classification. 展开更多
关键词 Radial basis function network Matrix-assisted laser desorption/ionization Time-of-flight mass spectrometry BACTERIUM CLASSIFICATION
在线阅读 下载PDF
Research on Modeling Approach of Brain Function Network Based on Anatomical Distance
7
作者 杨艳丽 郭浩 +1 位作者 陈俊杰 李海芳 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期758-762,共5页
The number of common neighbor between nodes is applied to the modeling of resting-state brain function network in order to analyze the effect of anatomical distance on the modeling of resting-state brain function netw... The number of common neighbor between nodes is applied to the modeling of resting-state brain function network in order to analyze the effect of anatomical distance on the modeling of resting-state brain function network. Three models based on anatomical distance, the number of common neighbor, or anatomical distance and the number of common neighbor are designed. Basing on residuals creates the evaluation criteria for selecting the optimal brain function model network in each class model. The model is selected to simulate the human real brain function network by comparison with real data functional magnetic resonance imaging(f MRI)network. Finally, the result shows that the best model only is based on anatomical distance. 展开更多
关键词 resting-state brain function network model network connection distance minimization topological property anatomical distance common neighbor
原文传递
STUDY OF RECOGNITION TECHNIQUE OF RADAR TARGET'S ONE-DIMENSIONAL IMAGES BASED ON RADIAL BASIS FUNCTION NETWORK 被引量:1
8
作者 黄德双 保铮 《Journal of Electronics(China)》 1995年第3期200-210,共11页
This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by the Recursive Least Square Algorithm(RLSA) to the recognition of one dimensional images of radar targets. The equivalence... This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by the Recursive Least Square Algorithm(RLSA) to the recognition of one dimensional images of radar targets. The equivalence between the RBFN and the estimate of Parzen window probabilistic density is proved. It is pointed out that the I/O functions in RBFN hidden units can be generalized to general Parzen window probabilistic kernel function or potential function, too. This paper discusses the effects of the shape parameter a in the RBFN and the forgotten factor A in RLSA on the results of the recognition of three kinds of kernel function such as Gaussian, triangle, double-exponential, at the same time, also discusses the relationship between A and the training time in the RBFN. 展开更多
关键词 RECOGNITION KERNEL function Shape parameter Forgotten factor One dimensional image RECURSIVE least SQUARE RADIAL basis function network
在线阅读 下载PDF
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares 被引量:1
9
作者 Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 《Journal of Software Engineering and Applications》 2010年第7期704-708,共5页
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le... This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN. 展开更多
关键词 RADIAL BASIS function network ORTHOGONAL Least SQUARES Algorithm Particle SWARM Optimization Mackey-Glass CHAOTIC Time-Series
在线阅读 下载PDF
Feature Mapping and Recuperation by Using Elliptical Basis Function Networks for Robust Speaker Verification
10
作者 李昕 郑宇 江芳泽 《Journal of Shanghai University(English Edition)》 CAS 2002年第4期331-336,共6页
The performance of speaker verification systems is often compromised under real world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a... The performance of speaker verification systems is often compromised under real world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a novel method to overcome this problem by using a non linear handset mapper. Under this method, a mapper is constructed by training an elliptical basis function network using distorted speech features as inputs and the corresponding clean features as the desired outputs. During feature recuperation, clean features are recovered by feeding the distorted features to the feature mapper. The recovered features are then presented to a speaker model as if they were derived from clean speech. Experimental evaluations based on 258 speakers of the TIMIT and NTIMIT corpuses suggest that the feature mappers improve the verification performance remarkably. 展开更多
关键词 feature mapping and recurpuration elliptical basis function (EBF) networks speaker verification.
在线阅读 下载PDF
Construction of Governmental Function Network Based on the Perspective of Problem of Farmers Who Lose Their Land
11
作者 LI Cui-ping,WANG Yu-hua College of Water Conservancy & Civil Engineering,China Agricultural University,Beijing 100083,China 《Asian Agricultural Research》 2011年第3期52-56,共5页
This paper illustrates three developmental stages of the functional transformation of western governments characterized by different extent of state involvement in economic activities.It investigates the functional ro... This paper illustrates three developmental stages of the functional transformation of western governments characterized by different extent of state involvement in economic activities.It investigates the functional role of nation-state in urbanization process in the context of western advanced economies with a particular focus on the laws and regulations,delineating the subjects,objectives,operational procedure,approval system,compensation standard and so on in relation to land expropriation.It also discusses the direction of the adjustment of state functions in China along three lines,including the transformation from political government to economic government,from direct management to indirect management and from comprehensive government to service-oriented and limited government.The paper probes into the roles that Chinese government should play in the urbanization process of land-lost peasants in terms of institutional innovation,optimal utilization of land compensation and related rules and regulations.Finally,it provides policy recommendations for the establishment of three-level state functional networks in order to address the challenge posed by amounting number of land-lost peasants. 展开更多
关键词 Landless FARMERS URBANIZATION Governmental functio
在线阅读 下载PDF
An Autonomous Incremental Learning Algorithm for Radial Basis Function Networks
12
作者 Seiichi Ozawa Toshihisa Tabuchi +1 位作者 Sho Nakasaka Asim Roy 《Journal of Intelligent Learning Systems and Applications》 2010年第4期179-189,共11页
In this paper, an incremental learning model called Resource Allocating Network with Long-Term Memory (RAN-LTM) is extended such that the learning is conducted with some autonomy for the following functions: 1) data c... In this paper, an incremental learning model called Resource Allocating Network with Long-Term Memory (RAN-LTM) is extended such that the learning is conducted with some autonomy for the following functions: 1) data collection for initial learning, 2) data normalization, 3) addition of radial basis functions (RBFs), and 4) determination of RBF cen-ters and widths. The proposed learning algorithm called Autonomous Learning algorithm for Resource Allocating Network (AL-RAN) is divided into the two learning phases: initial learning phase and incremental learning phase. And the former is further divided into the autonomous data collection and the initial network learning. In the initial learning phase, training data are first collected until the class separability is converged or has a significant dif-ference between normalized and unnormalized data. Then, an initial structure of AL-RAN is autonomously determined by selecting a moderate number of RBF centers from the collected data and by defining as large RBF widths as possible within a proper range. After the initial learning, the incremental learning of AL-RAN is conducted in a sequential way whenever a new training data is given. In the experiments, we evaluate AL-RAN using five benchmark data sets. From the experimental results, we confirm that the above autonomous functions work well and the efficiency in terms of network structure and learning time is improved without sacrificing the recognition accuracy as compared with the previous version of AL-RAN. 展开更多
关键词 AUTONOMOUS LEARNING INCREMENTAL LEARNING RADIAL BASIS function network PATTERN Recognition
暂未订购
Function Approximation Using Robust Radial Basis Function Networks
13
作者 Oleg Rudenko Oleksandr Bezsonov 《Journal of Intelligent Learning Systems and Applications》 2011年第1期17-25,共9页
Resistant training in radial basis function (RBF) networks is the topic of this paper. In this paper, one modification of Gauss-Newton training algorithm based on the theory of robust regression for dealing with outli... Resistant training in radial basis function (RBF) networks is the topic of this paper. In this paper, one modification of Gauss-Newton training algorithm based on the theory of robust regression for dealing with outliers in the framework of function approximation, system identification and control is proposed. This modification combines the numerical ro- bustness of a particular class of non-quadratic estimators known as M-estimators in Statistics and dead-zone. The al- gorithms is tested on some examples, and the results show that the proposed algorithm not only eliminates the influence of the outliers but has better convergence rate then the standard Gauss-Newton algorithm. 展开更多
关键词 NEURAL network ROBUST TRAINING BASIS function DEAD ZONE
在线阅读 下载PDF
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
14
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
Modeling uncertainty propagation in Eccentric Braced Frames using Endurance Time method and Radial Basis Function networks
15
作者 Mohsen MASOOMZADEH Mohammad Ch.BASIM +1 位作者 Mohammad Reza CHENAGHLOU Amir H.GANDOMI 《Frontiers of Structural and Civil Engineering》 2025年第3期378-395,共18页
A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently,... A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently, the modeling parameters have been introduced to simulate the hysteretic behavior of shear links in EBFs with specific Coefficient of Variation associated with each parameter to consider the uncertainties. The main purpose of this paper is to assess the effect of these uncertainties in the seismic response of EBFs by combining different sources of aleatory and epistemic uncertainties while making a balance between the required computational effort and the accuracy of the responses. This assessment is carried out in multiple performance levels using Endurance Time (ET) method as an efficient Nonlinear Time History Analysis. To demonstrate the method, a 4-story EBF that considers behavioral parameters has been considered. First, a sensitivity analysis using One-Variable-At-a-Time procedure and the ET method has been utilized to sort the parameters with regard to their importance in seismic responses in two intensity levels. A sampling-based reliability method is first used to propagate the modeling uncertainties into the fragility curves of the structure. Radial Basis Function Networks are then utilized to estimate the structural responses, which makes it feasible to propagate the uncertainties with an affordable computational effort. The Design of Experiments technique is implemented to acquire the training data, reducing the required data. The results show that the mathematical relationships defined by Artificial Neural Networks and using the ET method can estimate the median Intensity Measures and shifts in dispersions with acceptable accuracy. 展开更多
关键词 Eccentric Braced Frames uncertainty propagation behavioral parameters Endurance Time method correlation Latin hypercube sampling Artificial Neural networks Radial Basis function networks
原文传递
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
16
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
17
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
原文传递
MART(Splitting-Merging Assisted Reliable)Independent Component Analysis for Extracting Accurate Brain Functional Networks 被引量:1
18
作者 Xingyu He Vince D.Calhoun Yuhui Du 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第7期905-920,共16页
Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determini... Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determining an optimal model order for ICA remains challenging,leading to criticism about the reliability of FN estimation.Here,we propose a SMART(splitting-merging assisted reliable)ICA method that automatically extracts reliable FNs by clustering independent components(ICs)obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders.We extend SMART ICA to multi-subject fMRI analysis,validating its effectiveness using simulated and real fMRI data.Based on simulated data,the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters.Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects,the resulting reliable group-level FNs are greatly similar between the two cohorts,and interestingly the subject-specific FNs show progressive changes while age increases.Furthermore,both small-scale and large-scale brain FN templates are provided as benchmarks for future studies.Taken together,SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data,while also providing linkages between different FNs. 展开更多
关键词 Independent component analysis functional magnetic resonance imaging-Brain functional networks Clustering Multi-model-order
原文传递
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy 被引量:1
19
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment functional Magnetic Resonance Imaging Brain functional network Graph Theoretical Analysis
暂未订购
Service Function Chain Migration in LEO Satellite Networks 被引量:1
20
作者 Geng Yuhui Wang Niwei +5 位作者 Chen Xi Xu Xiaofan Zhou Changsheng Yang Junyi Xiao Zhenyu Cao Xianbin 《China Communications》 SCIE CSCD 2024年第3期247-259,共13页
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat... With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity. 展开更多
关键词 network function virtualization(NFV) resource allocation satellite networks service function chain(SFC) SFC migration SFC placement soft-ware defined network(SDN)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部