期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
Microstructure and Properties of Fe-Mo Functionally Graded Materials Fabricated by Electron Beam-Directional Energy Deposition
1
作者 Li Danni Yao Zhengjun +6 位作者 Yao Mengxin Zhang Shuxian Moliar Oleksandr Soloviova Tetiana Trosnikova Iryna Loboda Petro Zhang Shasha 《稀有金属材料与工程》 北大核心 2025年第3期554-568,共15页
Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy depositio... Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa. 展开更多
关键词 functionally graded materials EB-DED microstructure evolution mechanical properties
原文传递
Formulation and Characterization of Functionally Graded Materials Comprising SS316L and Inconel625 for Enhanced Performance in High-Pressure Pneumatic Tools
2
作者 Sainath Krishna Mani Iyer Karuppasamy Ramasamy Prabagaran Subramaniam 《稀有金属材料与工程》 北大核心 2025年第2期363-376,共14页
SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+... SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+20%Inconel625+20%Ti6Al4V composite and 60%SS316L+20%Inconel625+20%Inconel718 composite,were prepared.The tensile strength,elongation,yield strength,hardness,cross section area of the parent material,and composition were analysed.Results illustrate that the 60%SS316L+20%Inconel625+20%Inconel718 composite has better mechanical properties than 60%SS316L+20%Inconel625+20%Ti6Al4V composite,and the comprehensive properties of 60%SS316L+20%Inconel 625+20%Ti6Al4V composite are better than those of the parent material SS316L.Hence,the composite of 60%SS316L+20%Inconel625+20%Inconel718 is optimal.Due to its high strength,the 60%SS316L+20%Inconel625+20%Inconel718 composite has great application potential in the field of high pressure pneumatic tool and defence tool. 展开更多
关键词 MICROSTRUCTURE tensile strength functionally graded material additive manufacturing Inconel alloy TITANIUM stainless steel wire arc additive manufacturing
原文传递
Polymer Materials Synthesized in Living Cells for Regulating Biological Functions
3
作者 Cheng-Fei Liu Yi-Fan Jin +2 位作者 Jia-Hui Ma Wei Tian Hua-Ping Xu 《Chinese Journal of Polymer Science》 2025年第8期1293-1310,共18页
Intracellular polymerization is an emerging field,showcasing high diversity and efficiency of chemistry.Motivated by the principles of natural biomolecular synthesis,polymerization within living cells is believed to b... Intracellular polymerization is an emerging field,showcasing high diversity and efficiency of chemistry.Motivated by the principles of natural biomolecular synthesis,polymerization within living cells is believed to be a powerful and versatile tool to modulate cell behavior.In this review,we summarized recent advances and future trends in the field of intracellular polymerization,specifically focusing on covalent and supramolecular polymerization.This discussion comprehensively covers the diverse chemical designs,reaction mechanisms,responsive features,and functional applications.Furthermore,we also clarified the connection between preliminary design of polymer synthesis and their subsequent biological applications.We hope this review will serve as an innovative platform for chemists and biologists to regulate biological functions in practical applications and clinical trials. 展开更多
关键词 Intracellular polymerization Covalent bonding Supramolecular interaction functional Polymer materials Biological functions
原文传递
Functionally graded materials based on porous poly(ionic liquid)s:Design strategies and applications
4
作者 Xiao-Yu Han Si-Hua Liu +1 位作者 Su-Yun Zhang Jian-Ke Sun 《Chinese Journal of Structural Chemistry》 2025年第7期86-102,共17页
Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), mer... Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare. 展开更多
关键词 functionally graded materials Poly(ionic liquid)s Membranes Bio-inspired materials SENSING
原文传递
Metallic Functionally Graded Materials:A Specific Class of Advanced Composites 被引量:12
5
作者 Jerzy J.Sobczak Ludmil Drenchev 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第4期297-316,共20页
Functionally graded materials, including their characterization, properties and production methods are a new rapidly developing field of materials science. The aims of this review are to systematize the basic producti... Functionally graded materials, including their characterization, properties and production methods are a new rapidly developing field of materials science. The aims of this review are to systematize the basic production techniques for manufacturing functionally graded materials. Attention is paid to the principles for obtaining graded structure mainly in the metal based functionally graded materials. Several unpublished results obtained by the authors have been discussed briefly. Experimental methods and theoretical analysis for qualitative and quantitative estimation of graded properties have also been presented. The article can be useful for people who work in the field of functionally graded structures and materials, and who need a compact informative review of recent experimental and theoretical activity in this area. 展开更多
关键词 functionally graded materials Production techniques Theoretical analysis
原文传递
Functional porous carbon-based composite electrode materials for lithium secondary batteries 被引量:5
6
作者 Kai Zhang Zhe Hu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期214-225,共12页
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break... The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries. 展开更多
关键词 porous carbons functional materials composite electrode materials synthetic method lithium secondary batteries
在线阅读 下载PDF
Intercalation Assembly Method and Intercalation Process Control of Layered Intercalated Functional Materials 被引量:5
7
作者 李凯涛 王桂荣 +2 位作者 李殿卿 林彦军 段雪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期453-462,共10页
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor... Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions. 展开更多
关键词 layered intercalated structure functional material intercalation assembly methods intercalation process
在线阅读 下载PDF
Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent 被引量:4
8
作者 Yi-Rong Wang Chun-Chun Yin +3 位作者 Jin-Ming Zhang Jin Wu Jian Yu Jun Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第4期483-499,I0005,共18页
Cellulose is one of the most abundant natural polymers in the nature,which has many attractive advantages,such as renewability,biodegradability,and biocompatibility.However,due to the strong hydrogen bond network and ... Cellulose is one of the most abundant natural polymers in the nature,which has many attractive advantages,such as renewability,biodegradability,and biocompatibility.However,due to the strong hydrogen bond network and hierarchical structure,cellulose is extremely difficult to be dissolved and processed.More recently,a class of novel eco-friendly solvents,ionic liquids,have been found to be able to efficiently dissolve cellulose,providing a versatile platform for cellulose processing and functionalization.Herein,we highlight recent advances in efficiently fabricating functional cellulose derivatives via the homogeneous chemical modification and developing all-biomass materials via controlling the dissolution-regeneration process in ionic liquids.The effective and environmentally-friendly utilization of cellulose not only reduces dependence on fossil resources but also protects the environment. 展开更多
关键词 CELLULOSE Ionic liquids Homogeneous modification functional materials Cellulose derivatives
原文传递
Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials 被引量:7
9
作者 WANG Di DENG Guo-wei +4 位作者 YANG Yong-qiang CHEN Jie WU Wei-hui WANG Hao-liang TAN Chao-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1155-1169,共15页
Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu... Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures. 展开更多
关键词 selective laser melting multilayer functionally graded material interfacial characterization crack defects mechanical properties
在线阅读 下载PDF
Solution-based Chemical Strategies to Purposely Control the Microstructure of Functional Materials 被引量:4
10
作者 Fei LIU Congting SUN Chenglin YAN Dongfeng XUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期641-648,共8页
Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid... Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials. 展开更多
关键词 functional materials Chemical strategy Chemical bonding theory MICROSTRUCTURE
在线阅读 下载PDF
The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves 被引量:5
11
作者 Jun Liang Shiping Wu Shanyi Du Center for Composite Materials and Structure,Harbin Institute of Technology,Harbin 150001,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第4期427-435,共9页
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater... In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials. 展开更多
关键词 CRACK The non-local theory Stress waves functionally graded materials
在线阅读 下载PDF
The Influence of Mineral Functional Materials on Chloride Ion Penetration of Concrete 被引量:4
12
作者 胡红梅 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第1期106-110,共5页
The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high perfor... The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases conc rete's capability to resist chloride ion penetration. The other is combined acti on of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration. 展开更多
关键词 mineral functional material chloride ion PENETRATION CONCRETE
在线阅读 下载PDF
Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials 被引量:3
13
作者 Feng Cai Yu-Xuan Chen +1 位作者 Wen-Zhong Wang Hai-Feng Yu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第4期397-416,I0004,共21页
The great potential of liquid-crystalline block copolymers(LCBCs)containing photoresponsive mesogens toward novel applications in photonics and nanotechnology has been attracting increasing attention,due to the combin... The great potential of liquid-crystalline block copolymers(LCBCs)containing photoresponsive mesogens toward novel applications in photonics and nanotechnology has been attracting increasing attention,due to the combination of the inherent property of microphase separation of block copolymers and the hierarchically-assembled structures of liquid-crystalline polymers(LCPs).The periodically ordered nanostructures in bulk film of LCBCs can be acquired by supramolecular cooperative motion,derived from the interaction between liquid-crystalline elastic deformation and microphase separation,which are able to improve physical properties of polymer film toward advanced functional applications.Moreover,various micro/nano-patterned structures have been fabricated via light manipulation of photoresponsive LCBCs with good reproducibility and mass production.Thanks to recent developments in synthesis and polymerization techniques,diverse azobenzene-containing LCBCs have been designed,resulting in the creation of a wide variety of novel functions.This review illustrates recent progresses in macroscopic regulation of hierarchical nanostructures in LCBCs towards functional materials.The existing challenges are also discussed,showing perspectives for future studies. 展开更多
关键词 Liquid-crystalline block copolymers Microphase separation Hierarchical nanostructures functional materials
原文传递
Optimization design and residual thermal stress analysis of PDC functionally graded materials 被引量:5
14
作者 CAO Pin-lu LIU Bao-chang +1 位作者 YIN Kun ZHANG Zu-pei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1318-1323,共6页
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ... The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6. 展开更多
关键词 functionally graded materials (FGM) Optimum design Polycrystalline diamond compact (PDC) Residual thermal stress Finite element method (FEM)
在线阅读 下载PDF
Review of functionally graded materials processed by additive manufacturing 被引量:5
15
作者 宋学平 黄健康 樊丁 《China Welding》 CAS 2023年第3期41-50,共10页
Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparati... Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparation of functionally gradient materials(FGM),and has become a research hotspot at present.By referring to and analyzing the recent research achievements in the additive manufacturing tech-nology of FGM,the latest research progress at domestic and abroad from four aspects were summaried:selective laser melting additive man-ufacturing,electron beam additive manufacturing,arc additive manufacturing,path planning,and material texture.Moreover,the existing problems in the research are pointed out,and the future research direction and focus are prospected. 展开更多
关键词 functionally graded materials additive manufacture research progress
在线阅读 下载PDF
The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis 被引量:2
16
作者 Gang Wang Shuwei Jia +7 位作者 Hongjing Gao Yewen Shui Jie Fan Yixia Zhao Lei Li Weimin Kang Nanping Deng Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期377-397,I0010,共22页
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent... Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts. 展开更多
关键词 Fluorine-containing functional materials Action mechanisms and structure designs Density functional theory Oxygen evolution reaction Oxygen reduction reaction
在线阅读 下载PDF
Recent Advances on the Development of Functional Materials in Microbial Fuel Cells:From Fundamentals to Challenges and Outlooks 被引量:2
17
作者 Qian Zhu Jingping Hu +5 位作者 Bingchuan Liu Shaogang Hu Sha Liang Keke Xiao Jiakuan Yang Huijie Hou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期401-426,共26页
Microbial fuel cells(MFCs),as a sustainable and promising technology to solve both environmental pollution and energy shortage,have captured tremendous attention.The conversion efficiency of chemical energy contained ... Microbial fuel cells(MFCs),as a sustainable and promising technology to solve both environmental pollution and energy shortage,have captured tremendous attention.The conversion efficiency of chemical energy contained in organic waste or wastewater to electricity via microbial metabolism strongly depends on the performance of each functional unit,including the anode,cathode and separator/membrane used in MFCs.Therefore,significant attention has been paid toward developing advanced functional materials to enhance the performance of each unit or provide new featured functions.This review paper provides a comprehensive review on recent achievements and advances in the modification and development of functional materials for MFC systems,including 1)the development of functional anode materials for enhanced microbial compatibilities as well as electron transfer capabilities,2)the development of cost-effective separators/membranes such as ion exchange membrane,porous membrane,polymer electrolyte membrane and composite membrane,and 3)the development of functional cathode catalysts to decrease the over-potential and enhance the electrocatalytic efficiency for oxygen reduction reaction in order to substitute the common costly Pt catalyst.The challenges and outlooks of functional materials for MFC applications are also discussed. 展开更多
关键词 ANODE CATHODE functional material MEMBRANE microbial fuel cell
在线阅读 下载PDF
Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering 被引量:3
18
作者 Hansang Kwon Marc Leparoux Akira Kawasaki 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第8期736-742,共7页
Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state s... Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state spark plasma sintering processes.The CNTs were well-dispersed in the Al particles using the nSiC as a solid mixing agent.Two different types of multi-walled CNTs were used to add different amounts of CNTs in the same volume.The ball milled Al—CNT—nSiC and Al—CNT powder mixtures were fully densified and demonstrated good adhesion with no serious microcracks and pores within an FG multilayer composite.Each layer contained different amounts of the CNTs,and the nSiC additions showed different microstructures and hardness.It is possible to control the characteristics of the FG multilayer composite through the efficient design of an Al—CNT—nSiC gradient layer.This concept offers a feasible approach for fabricating the dualnanoparticulate-reinforced Al matrix nanocomposites and can be applied to other scenarios such as polymer and ceramic systems. 展开更多
关键词 Carbon nanotubes(CNT) Silicon carbide High-energy ball milling Spark plasma sintering(SPS) functionally graded materials(FGM)
原文传递
3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials 被引量:2
19
作者 CHEN Jiang-ying CHEN Wei-qiu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1038-1043,共6页
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded tra... The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media. The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically. 展开更多
关键词 functionally graded materials Transversely isotropic Rotating annular plate Analytical solution
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部