Vanadium redox flow batteries(VRFBs)hold significant promise for large-scale energy storage applications.However,the sluggish reaction kinetics on the electrode surface considerably limit their performance.Implementat...Vanadium redox flow batteries(VRFBs)hold significant promise for large-scale energy storage applications.However,the sluggish reaction kinetics on the electrode surface considerably limit their performance.Implementation of efficient surface modification on carbon electrodes through an economically viable production method is crucial for the practical application of VRFBs.Herein,a nano-carbon layer with morphology of fine nanoparticles(<90 nm)and rich oxygen functional groups was constructed on carbon felts by unbalanced magnetron sputtering coupled with thermal treatment.This modified carbon felt served as both anode and cathode in cell,enabling an improved wettability of electrolyte and high reversibility of the active mass,and promoted kinetics of redox reactions.The optimized carbon felt,achieved through one hour of deposition(1C-CF),demonstrated outstanding electrochemical performance in a single cell.The cell exhibited a high energy efficiency of 82.4%at a current density of 100 m A cm^(-2)and maintained 71.8%at a high current density of 250 mA cm^(-2).Furthermore,the energy efficiency remained at 77.2%during long-term cycling(450 cycles)at a current density of 150 mA cm^(-2),indicating good electrode stability.Our results shed light on the surface design of carbon felt electrodes for the broad application interest of VRFB energy storage systems.展开更多
Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers f...Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers from many severe issues,including dendrite growth and parasitic reactions,which often lead to short cycle lives.Herein,we propose the construction of functional organic interfacial layers(OIL)on the Zn metal anodes to address these challenges.Through a well-designed organic-assist pre-construction process,a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed,which can not only efficiently facilitate the smooth Zn plating and stripping,but also introduce a stable environment for battery reactions.Through density functional theory calculations and experimental characterizations,we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn^(2+)transport.Thus,the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation.When paired with the H_(2)V_(3)O_(8)cathode,the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles,marking an important milestone for Zn anode development for potential industrial applications.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid ...Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid oxide fuel cells(SOFCs).The greatest difference between PCFCs and SOFCs is the specific requirement of protonic(H+)conductivity at the PCFC cathode,in addition to the electronic(e^(-))and oxide-ion(O^(2-))conductivity.The development of a triple H^(+)/e^(-)/O^(2-)conductor for PCFC cathode is still challenging.Thus,the most-widely used cathode material is based on the mature e^(-)/O^(2-)conductor.However,this leads to insufficient triple phase boundary(TPB),i.e.,reaction area.Herein,an efficient strategy that uses a~100 nm-thick proton conductive functional layer(La_(0.5)Sr_(0.5)CoO_(3-δ),LSC55)in-between the typical La_(0.8)Sr_(0.2)CoO_(3-δ)cathode(a mature e-/O^(2-)conductor,LS C 82)and B aZr_(0.4)Ce_(0.4)Y_(0.1)Yb_(0.)1O_(3-δ)elec trolyte(11 mm in diameter,20μm in thickness)is proposed to significantly enhance the reaction area.Reasonably,the ohmic resistance and polarization resistance are both decreased by 47%and 62%,respectively,compared with that of PCFCs without the functional layer.The power density of the PCFC with such a functional layer can be raised by up to 2.24 times,superior to those described in previous reports.The enhanced PCFC performances are attributed to the well-built TPB and enhanced reaction area via the functional layer engineering strategy.展开更多
The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of co...The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of coumarin-3-carboxylic acid(3-CCA)and albumin(ALB)on the inorganic layer(IC),produced by plasma electrolysis of AZ31 Mg alloy,led to enabling organically synergistic reactions on the porous inorganic surface,forming a flake-like structure sealing the structural defects of IC.Synergistic actions between OC and IC endow the flake-like structures with chemical protection and photocatalytic performance.Upon contact with a corrosive solution,the IOH layer possesses stable morphologies that delay the corrosive degradation of the whole structure.The electrochemical stability of the sample produced by immersion IC in the organic solution for 10 h(IOH2 sample)was superior to the other samples as it had the lowest corrosion current density(1.69×10^(−10)A·cm^(−2))and the highest top layer resistance(1.2×10^(7)Ω·cm^(2)).Moreover,the IOH layer can photodegrade the organic pollutants in model wastewater,where the highest photocatalytic efficiency of 99.47%was found in the IOH2 sample.Furthermore,computational calculations were performed to assess the relative activity of different parts of the ALB and 3-CCA structures,which provide helpful information into the formation mechanism of the IOH materials.展开更多
We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theor...We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally gra...The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
A simple method is proposed to optimize the thickness parameter of the boundary layer of the saturation function in the Complementary Sliding Mode Control (CSMC). A pair of complementary sliding surfaces are construct...A simple method is proposed to optimize the thickness parameter of the boundary layer of the saturation function in the Complementary Sliding Mode Control (CSMC). A pair of complementary sliding surfaces are constructed. And the Taylor series is used to estimate the steady state error of CSMC system to optimize the parameter value for the boundary layer of the saturation function without artificial settings. This proposed CSMC strategy is applied to the speed regulation in permanent magnet synchronous motor with lump uncertainties. The experimental results show that the proposed CSMC strategy can obtain an optimal value for the boundary layer parameter effectively suppressing the chattering and keep an excellent system performance.展开更多
1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
Double-layered graphene sheets (DLGSs) can be applied to the development of a new generation of nanomechanical sensors due to their unique physical properties. A rectangular DLGS with a nanoparticle randomly located...Double-layered graphene sheets (DLGSs) can be applied to the development of a new generation of nanomechanical sensors due to their unique physical properties. A rectangular DLGS with a nanoparticle randomly located in the upper sheet is modeled as two nonlocal Kirchhoff plates connected by van der Waals forces. The Galerkin strip transfer function method which is a semi-analytical method is developed to compute the natural frequencies of the mass- plate vibrating system. It can give exact closed-form solutions along the longitudinal direction of the strip. The results obtained from the semi-analytical method are compared with the previous ones, and the differences between the single-layered graphene sheet (SLGS) and the DLGS mass sensors are also investigated. The results demonstrate the similarity of the in-phase mode between the SLGS and DLGS mass sensors. The sensitivity of the DLGS mass sensor can be increased by decreasing the nonlocal parameter, moving the attached nanoparticle closer to the DLGS center and making the DLGS smaller. These conclusions are helpful for the design and application of graphene-sheet-based resonators as nano-mass sensors.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equatio...This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.展开更多
In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC developm...In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.展开更多
A three-dimensional size-dependent layered model for simply-supported and func- tionally graded magnetoelectroelastic plates is presented based on the modified couple-stress theory. The functionally graded material is...A three-dimensional size-dependent layered model for simply-supported and func- tionally graded magnetoelectroelastic plates is presented based on the modified couple-stress theory. The functionally graded material is assumed to be exponential in the thickness direc- tion of the plate. The final governing equations are reduced to an eigensystem by expressing the extended displacements in terms of two-dimensional Fourier series. Using the propagator matrix method, the exact solutions of the magnetic, electric and mechanical fields of sandwich nanoplates with couple-stress effect and under the surface loads are derived. Numerical examples for two functionally graded sandwich plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to demonstrate the effect of the functional gradient factor and material length-scale parameter on the induced fields. The exact solutions presented in this work can also serve as benchmarks to various numerical methods for analyzing the size-dependent features in layered systems.展开更多
Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micell...By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micelle, has been carried out under the general potential condition for the first time. The method also can give the radius, the surface potential, and the thickness of the layer.展开更多
Scaling laws are addressed by analysing moments of velocity increments which obtained by Particle-image Velocimetry(PIV)system in the boundary layer of a flat plate.In the paper,we measure the moments of increments of...Scaling laws are addressed by analysing moments of velocity increments which obtained by Particle-image Velocimetry(PIV)system in the boundary layer of a flat plate.In the paper,we measure the moments of increments of upstream velocity(u'),longitudinal velocity(v')and ponderance of vorticity(dv'/dx)at Reθ=2167 in different wall distance and verify the anomaly of the scaling exponents of high-order structure functions with the increasing order of the moments,discuss the scaling of non-integer moments of order between+2 and-1.The difference of scaling exponents of low-order structure functions between the experimental data and Kolmogorov's,SL's(She & Leveque)prediction increases as the moment order decreases toward-1,which shows that the anomaly is manifested in low-oeder moments as well.However,for same order structure functions,the scaling exponents of v' and dv'/dx are not changeable in different wall distance.展开更多
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering t...Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.展开更多
基金supported by National Natural Science Foundation of China(U21B2057)。
文摘Vanadium redox flow batteries(VRFBs)hold significant promise for large-scale energy storage applications.However,the sluggish reaction kinetics on the electrode surface considerably limit their performance.Implementation of efficient surface modification on carbon electrodes through an economically viable production method is crucial for the practical application of VRFBs.Herein,a nano-carbon layer with morphology of fine nanoparticles(<90 nm)and rich oxygen functional groups was constructed on carbon felts by unbalanced magnetron sputtering coupled with thermal treatment.This modified carbon felt served as both anode and cathode in cell,enabling an improved wettability of electrolyte and high reversibility of the active mass,and promoted kinetics of redox reactions.The optimized carbon felt,achieved through one hour of deposition(1C-CF),demonstrated outstanding electrochemical performance in a single cell.The cell exhibited a high energy efficiency of 82.4%at a current density of 100 m A cm^(-2)and maintained 71.8%at a high current density of 250 mA cm^(-2).Furthermore,the energy efficiency remained at 77.2%during long-term cycling(450 cycles)at a current density of 150 mA cm^(-2),indicating good electrode stability.Our results shed light on the surface design of carbon felt electrodes for the broad application interest of VRFB energy storage systems.
基金supported by the Australian Research Council (FT180100705, DP230101579, DE240100868)CSIRO “International Hydrogen Research Collaboration ProgramRESEARCH FELLOWSHIPS”+2 种基金the National Natural Science Foundation of China (22209103)support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”the “Innovation Research Team of High-Level Local Universities in Shanghai”
文摘Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost.However,the use of Zn metal in batteries suffers from many severe issues,including dendrite growth and parasitic reactions,which often lead to short cycle lives.Herein,we propose the construction of functional organic interfacial layers(OIL)on the Zn metal anodes to address these challenges.Through a well-designed organic-assist pre-construction process,a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed,which can not only efficiently facilitate the smooth Zn plating and stripping,but also introduce a stable environment for battery reactions.Through density functional theory calculations and experimental characterizations,we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn^(2+)transport.Thus,the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation.When paired with the H_(2)V_(3)O_(8)cathode,the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles,marking an important milestone for Zn anode development for potential industrial applications.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金financially supported by China Post-doctoral Science Foundation(No.2022M710856)Guangzhou Postdoctoral Research Project(No.62104380)+2 种基金the Outstanding Youth Project of Natural Science Foundation of Guangdong Province(No.2022B1515020020)the Funding by Science and Technology Projects in Guangzhou(Nos.202206050003 and 202201010603)Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells。
文摘Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid oxide fuel cells(SOFCs).The greatest difference between PCFCs and SOFCs is the specific requirement of protonic(H+)conductivity at the PCFC cathode,in addition to the electronic(e^(-))and oxide-ion(O^(2-))conductivity.The development of a triple H^(+)/e^(-)/O^(2-)conductor for PCFC cathode is still challenging.Thus,the most-widely used cathode material is based on the mature e^(-)/O^(2-)conductor.However,this leads to insufficient triple phase boundary(TPB),i.e.,reaction area.Herein,an efficient strategy that uses a~100 nm-thick proton conductive functional layer(La_(0.5)Sr_(0.5)CoO_(3-δ),LSC55)in-between the typical La_(0.8)Sr_(0.2)CoO_(3-δ)cathode(a mature e-/O^(2-)conductor,LS C 82)and B aZr_(0.4)Ce_(0.4)Y_(0.1)Yb_(0.)1O_(3-δ)elec trolyte(11 mm in diameter,20μm in thickness)is proposed to significantly enhance the reaction area.Reasonably,the ohmic resistance and polarization resistance are both decreased by 47%and 62%,respectively,compared with that of PCFCs without the functional layer.The power density of the PCFC with such a functional layer can be raised by up to 2.24 times,superior to those described in previous reports.The enhanced PCFC performances are attributed to the well-built TPB and enhanced reaction area via the functional layer engineering strategy.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(No.2022R1A2C1006743).
文摘The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of coumarin-3-carboxylic acid(3-CCA)and albumin(ALB)on the inorganic layer(IC),produced by plasma electrolysis of AZ31 Mg alloy,led to enabling organically synergistic reactions on the porous inorganic surface,forming a flake-like structure sealing the structural defects of IC.Synergistic actions between OC and IC endow the flake-like structures with chemical protection and photocatalytic performance.Upon contact with a corrosive solution,the IOH layer possesses stable morphologies that delay the corrosive degradation of the whole structure.The electrochemical stability of the sample produced by immersion IC in the organic solution for 10 h(IOH2 sample)was superior to the other samples as it had the lowest corrosion current density(1.69×10^(−10)A·cm^(−2))and the highest top layer resistance(1.2×10^(7)Ω·cm^(2)).Moreover,the IOH layer can photodegrade the organic pollutants in model wastewater,where the highest photocatalytic efficiency of 99.47%was found in the IOH2 sample.Furthermore,computational calculations were performed to assess the relative activity of different parts of the ALB and 3-CCA structures,which provide helpful information into the formation mechanism of the IOH materials.
基金the National Natural Science Foundation of China(Grant No.61865008).
文摘We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index(RI)sensing with self-reference characteristics in the near-infrared band.Using theoretical analysis and the finite-difference time-domain method,the plasmonic mechanism of the structure is discussed in detail.The results show that the excited resonances are independent of each other and have different fields of action.The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU,and the figure of merit(FOM)can reach 145 RIU-1.Importantly,the mode that is insensitive to the analyte environment exhibits good self-reference characteristics.Moreover,we discuss the case of exchanging the substrate material with the analyte environment.Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
基金supports of the Ministry of Education and Science of Russia (11.519.11.3028,14.B37.21.1131,14.B7.21.1632)Russian Foundation of Basic Research (11-08-91168-GFEN a)
文摘The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61174051)the Natural Science Foundation of Fujian Province(Grant No.2017J05101)the Technology Project of Fujian Province(Grant No.2019H0007)
文摘A simple method is proposed to optimize the thickness parameter of the boundary layer of the saturation function in the Complementary Sliding Mode Control (CSMC). A pair of complementary sliding surfaces are constructed. And the Taylor series is used to estimate the steady state error of CSMC system to optimize the parameter value for the boundary layer of the saturation function without artificial settings. This proposed CSMC strategy is applied to the speed regulation in permanent magnet synchronous motor with lump uncertainties. The experimental results show that the proposed CSMC strategy can obtain an optimal value for the boundary layer parameter effectively suppressing the chattering and keep an excellent system performance.
基金supported by the National Natural Science Foundationthe National Key Technologies R&D Program (2011BAE28B01)the 863 Program (2013AA032501)
文摘1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
基金supported by the National Natural Science Foundation of China(Grant No.11302254)
文摘Double-layered graphene sheets (DLGSs) can be applied to the development of a new generation of nanomechanical sensors due to their unique physical properties. A rectangular DLGS with a nanoparticle randomly located in the upper sheet is modeled as two nonlocal Kirchhoff plates connected by van der Waals forces. The Galerkin strip transfer function method which is a semi-analytical method is developed to compute the natural frequencies of the mass- plate vibrating system. It can give exact closed-form solutions along the longitudinal direction of the strip. The results obtained from the semi-analytical method are compared with the previous ones, and the differences between the single-layered graphene sheet (SLGS) and the DLGS mass sensors are also investigated. The results demonstrate the similarity of the in-phase mode between the SLGS and DLGS mass sensors. The sensitivity of the DLGS mass sensor can be increased by decreasing the nonlocal parameter, moving the attached nanoparticle closer to the DLGS center and making the DLGS smaller. These conclusions are helpful for the design and application of graphene-sheet-based resonators as nano-mass sensors.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金National Natural Science Foundation of China Key Project,under Grant No.50538030Postdoctoral Science Foundation of China under Grant No.2013M531084Natural Science Foundation of Heilongjiang Province of China under Grant No.E201221
文摘This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.
基金financial support from the 973 program(No.2014CB643503)the National Natural Science Foundation of China(No.21474088)+2 种基金financial support from NSFC(No.21674093)the National 1000 Young Talents Program hosted by China100 Talents Program by Zhejiang University
文摘In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11262012, 11502123, 11172273) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2015JQ01).
文摘A three-dimensional size-dependent layered model for simply-supported and func- tionally graded magnetoelectroelastic plates is presented based on the modified couple-stress theory. The functionally graded material is assumed to be exponential in the thickness direc- tion of the plate. The final governing equations are reduced to an eigensystem by expressing the extended displacements in terms of two-dimensional Fourier series. Using the propagator matrix method, the exact solutions of the magnetic, electric and mechanical fields of sandwich nanoplates with couple-stress effect and under the surface loads are derived. Numerical examples for two functionally graded sandwich plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to demonstrate the effect of the functional gradient factor and material length-scale parameter on the induced fields. The exact solutions presented in this work can also serve as benchmarks to various numerical methods for analyzing the size-dependent features in layered systems.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
基金We wish to thank to the National Natural Science Foundation of China(to grant No,29903006 and 29973023)the Visiting Scholar Foundation of Key Laboratory in University of China for financial suppor.
文摘By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micelle, has been carried out under the general potential condition for the first time. The method also can give the radius, the surface potential, and the thickness of the layer.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10372033)
文摘Scaling laws are addressed by analysing moments of velocity increments which obtained by Particle-image Velocimetry(PIV)system in the boundary layer of a flat plate.In the paper,we measure the moments of increments of upstream velocity(u'),longitudinal velocity(v')and ponderance of vorticity(dv'/dx)at Reθ=2167 in different wall distance and verify the anomaly of the scaling exponents of high-order structure functions with the increasing order of the moments,discuss the scaling of non-integer moments of order between+2 and-1.The difference of scaling exponents of low-order structure functions between the experimental data and Kolmogorov's,SL's(She & Leveque)prediction increases as the moment order decreases toward-1,which shows that the anomaly is manifested in low-oeder moments as well.However,for same order structure functions,the scaling exponents of v' and dv'/dx are not changeable in different wall distance.
基金supported by the National Natural Science Foundation of China (Nos. 10872083 and10602021)the Doctoral Foundation of Ministry of Education of China (No. 200807310002)
文摘Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.