In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distr...In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distributed fusion algorithms,such as the Covariance Union(CU)and Faulttolerant Generalized Convex Combination(FGCC),are only used for the point estimation case where local estimates and their associated error covariances are provided.A treatment with focus on the fault-tolerant distributed fusions of arbitrary local Probability Density Functions(PDFs)is lacking.For this problem,we first propose Kullback–Leibler Divergence(KLD)and reversed KLD induced functional Fuzzy c-Means(FCM)clustering algorithms to soft cluster all local PDFs,respectively.On this basis,two fault-tolerant distributed fusion algorithms of arbitrary local PDFs are then developed.They select the representing PDF of the cluster with the largest sum of memberships as the fused PDF.Numerical examples verify the better fault tolerance of the developed two distributed fusion algorithms.展开更多
The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the ele...The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.展开更多
The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clus...The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.展开更多
Structural and electronic properties of bimetallic clusters AlnCom with n=1~7 and m=1~2 have been investigated using the B3LYP-DFT method.Structural optimization and frequency analysis were performed at the CEP-121G...Structural and electronic properties of bimetallic clusters AlnCom with n=1~7 and m=1~2 have been investigated using the B3LYP-DFT method.Structural optimization and frequency analysis were performed at the CEP-121G level.The charge-induced structural changes in these anions were discussed.In addition,the corresponding total energies,binding energies,adiabatic electron affinities and vertical electron affinity were also presented and discussed.Our predicted vertical ionization potentials are in reasonable agreement with the experimental ionization potentials.Among different AlnCom and AlnCom-anions (n=1~7,m=1~2),Al4Co,Al6Co,Al4Co-,Al6Co-and Al4Co2-are predicted to be species with high stabilities.展开更多
Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structur...Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.展开更多
The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model con...The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.展开更多
This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL...This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.展开更多
In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the ...In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.展开更多
Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that th...Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H2 when compared with the others except Ti3Zr, which shows the highest activity. The magnetic moments of TimZrn and TimZrnH2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti3Zr2.展开更多
A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations...A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.展开更多
BACKGROUND: Multiple linear regression, general linear test and calculation of correlation values are commonly used in studies of brain function using functional magnetic resonance imaging (fMRI). However, there ar...BACKGROUND: Multiple linear regression, general linear test and calculation of correlation values are commonly used in studies of brain function using functional magnetic resonance imaging (fMRI). However, there are some limitations in their applications. In non-signal data statistics, cluster analysis functions as a very mature method, but it is not reliable in signal data statistics. OBJECTIVE: To investigate the spatial distribution of complex function in brain areas during motor tasks by cluster analysis, and to compare this with multiple linear regression. DESIGN, TIME AND SETTING: Block design, performed at the MR laboratory of Guangzhou University of Chinese Medicine. PARTICIPANTS: Fifteen right-handed, healthy university students (10 males and 5 females, aged 19-21 years). METHODS: fMRI was performed while the subjects performed a finger movement task with the right hand. The screen showed a gray hand, with red spots presented in a random order on one of the index, middle, ring and little fingers. The subjects were required to remember the sequence of the red spots on the display. After a delay of 14 seconds, the subjects tapped their fingers according to the order of the red spots, as soon as the red spots turned green. After an interval of 14 seconds, another sequence appeared. Every sequence lasted for 28 seconds, including preparation and execution phases. A total of nine sequences per subject were performed. The data were analyzed using deconvolution and cluster methods, and program "cluster" was used to statistically analyze the coordinate positions of deconvolution and cluster data. MAIN OUTCOME MEASURES: Brain activation maps by deconvolution and brain function maps by clustering of the maximum peak values; blood oxygenation level dependent curves by deconvolution; coordinates of peak values and activation volumes by the two methods. RESULTS: The deconvolution method could not integrate the brain activation maps during different tasks into one activation picture, which made it difficult to identify exactly the spatial distribution of various activities in certain brain areas. Cluster analysis, using maximum peak values, clearly showed brain areas of monofunction and multifunction, even complex function, and presented a clear spatial distribution of multiple functional movements. Using the command "clust" with the same parameters, the volumes of main brain activation areas were consistent, indicating the maximum peak values are completely reliable in contrast to the deconvolution method. CONCLUSION: Cluster analysis is conducive to the analysis of multifunctional complex areas. Clustering using maximum peak values is a reliable method. Brain areas, such as primary motor cortex, supplementary motor area, and posterior parietal cortex, are not monofunctional areas, but multifunctional, complex ones. The activation maps derived by deconvolution statistics are distributed in many maps, which are not convenient to determine the functional distribution of complex brain areas.展开更多
The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copperdoped gold clusters, AunCu (n = 1-7), are investigated using the density functional theory. Several lo...The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copperdoped gold clusters, AunCu (n = 1-7), are investigated using the density functional theory. Several low-lying isomers are determined. The results indicate that the ground-state AunCu clusters have planar structures for n = 1-7. The stability trend of the AunCu clusters (n = 1-7), shows that odd-numbered AunCu clusters are more stable than the neighbouring even-numbered ones, thereby indicating the AusCu clusters are magic cluster with high chemical stability.展开更多
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc...In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.展开更多
The properties of the modified surface of SnO2(110) with benzoic acid (Y-C6H4-COOH: Y is para position relative to -COOH group) derivatives were investigated using density functional theory. Zehner et al. mentioned th...The properties of the modified surface of SnO2(110) with benzoic acid (Y-C6H4-COOH: Y is para position relative to -COOH group) derivatives were investigated using density functional theory. Zehner et al. mentioned that the modification of surface dipole moment made it possible to tune the work function of the system. The experiment of Ganzorig et al. showed that there was a linear relationship between the dipole moment of the binding molecule and the work function change of the system using the modified surface of indium-tin oxide (ITO) with some benzoic acid derivatives. To elucidate the relation between the dipole moment of the molecule and the work function change, we investigated the modified surface of SnO2(110) using Sn7O14 cluster model which was embedded in the fixed point charges. On the modification of the surface, benzoic acid derivatives were bound to SnO2 surface. By changing the terminal group of benzoic acid with H, Cl, F, CF3 and CCl3, the work function changed and the dipole moment of the binding molecules of the modified SnO2(110) were evaluated. The results showed that there was a linear relationship between the dipole moment of the binding molecules and the work function changed. From this relation, the average value of the dipole moments of Sn-OOC linkage at the surface was also evaluated.展开更多
According to the characteristics of the correlation of multiple wind farm output, this paper put forwards a modeling method based on fuzzy c-means clustering and the copula function, and correlation wind farms are ins...According to the characteristics of the correlation of multiple wind farm output, this paper put forwards a modeling method based on fuzzy c-means clustering and the copula function, and correlation wind farms are inserted into IEEE-RTS79 reliability system for risk assessment. By the probabilistic load flow calculated by Monte Carlo simulation method, the probability of the accident is derived, and bus voltage and branch power flow overload risk index are defined in this paper. The results show that this method can realize the modeling of the correlation of wind power output, and the risk index can identify the weakness of the system, which can provide reference for the operation and maintenance personnel.展开更多
The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron af...The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.展开更多
A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to...A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to the even-odd alternation in relation to the number of gold atoms in the cluster. The HCN molecule is adsorbed at simple adsorption sites (1-fold coordination), perpendicular to the adsorption site. The largest adsorption energy is only about 74.61 kJ·mol^-1, which indicates that the HCN molecule does not decompose and the C-N bond retains triple bond, and that the C-H and C-N stretching frequencies are only weakly perturbed. The adsorbed C-N and C-H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.展开更多
The general features of the geometries and electronic properties for 3d, 4d, and 5d transition-metal atom doped Au6 clusters are systematically investigated by using relativistic all-electron density functional theory...The general features of the geometries and electronic properties for 3d, 4d, and 5d transition-metal atom doped Au6 clusters are systematically investigated by using relativistic all-electron density functional theory in the generalized gradient approximation (CGA). A number of structural isomers are considered to search the lowest-energy structures of M@Au6 clusters (M=3d, 4d and 5d transition-metal atoms), and the transition metal atom locating in the centre of an Au6 ring is found to be in the ground state for all the M@Au6 clusters. All doped clusters, expect for Pd@Au6, show large relative binding energies compared with a pure Au7 cluster, indicating that doping by 3d, 4d, 5d transition-metal atoms could stabilize the Au6 ring and promote the formation of a new binary alloy cluster.展开更多
The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density f...The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density functional theory. The optimized geometries reveal that for 2 ≤ n ≤ 7, there are significant similarities in geometry among pure Agn, Nan, and Lin clusters, and the transitions from planar to three-dimensional configurations occur at n = 7, 7, and 6, respectively. In contrast, the first three-dimensional (3D) structures are observed at n + m = 5 for both NanAgm and LinAgm clusters. When n + m ≥5, a striking feature is that the trigonal bipyramid becomes the main subunit of LinAgm. Furthermore, dramatic odd-even alternative behaviours are obtained in the fragmentation energies, secondorder difference energies, highest occupied and lowest unoccupied molecular orbital energy gaps, and chemical hardness for both pure and doped clusters. The analytic results exhibit that clusters with an even electronic configuration (2, 4, 6) possess the weakest chemical reactivity and more enhanced stability.展开更多
基金supported in part by the Open Fund of Intelligent Control Laboratory,China(No.ICL-2023–0202)in part by National Key R&D Program of China(Nos.2021YFC2202600,2021YFC2202603)。
文摘In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distributed fusion algorithms,such as the Covariance Union(CU)and Faulttolerant Generalized Convex Combination(FGCC),are only used for the point estimation case where local estimates and their associated error covariances are provided.A treatment with focus on the fault-tolerant distributed fusions of arbitrary local Probability Density Functions(PDFs)is lacking.For this problem,we first propose Kullback–Leibler Divergence(KLD)and reversed KLD induced functional Fuzzy c-Means(FCM)clustering algorithms to soft cluster all local PDFs,respectively.On this basis,two fault-tolerant distributed fusion algorithms of arbitrary local PDFs are then developed.They select the representing PDF of the cluster with the largest sum of memberships as the fused PDF.Numerical examples verify the better fault tolerance of the developed two distributed fusion algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.
基金supported by the National Natural Science Foundation of China(71671090)the Aeronautical Science Foundation of China(2016ZG52068)+1 种基金the Liberal Arts and Social Sciences Foundation of the Ministry of Education(MOE)in China(15YJCZH189)the Qinglan Project for Excellent Youth or Middle-aged Academic Leaders in Jiangsu Province
文摘The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively.
基金supported by the National Natural Science Foundation of China (20603021)Youth Foundation of Shanxi Province (2007021009)
文摘Structural and electronic properties of bimetallic clusters AlnCom with n=1~7 and m=1~2 have been investigated using the B3LYP-DFT method.Structural optimization and frequency analysis were performed at the CEP-121G level.The charge-induced structural changes in these anions were discussed.In addition,the corresponding total energies,binding energies,adiabatic electron affinities and vertical electron affinity were also presented and discussed.Our predicted vertical ionization potentials are in reasonable agreement with the experimental ionization potentials.Among different AlnCom and AlnCom-anions (n=1~7,m=1~2),Al4Co,Al6Co,Al4Co-,Al6Co-and Al4Co2-are predicted to be species with high stabilities.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-01)the National Natural Science Foundation of China (Grant Nos. 20853001 and 10874007)
文摘Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.
基金supported by China University of Petroleum (East China) (grant 09CX04045A)
文摘The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10247007)the Natural Science Foundation of Shaanxi Province (Grant No 2002A09)the Special Item Foundation of Educational Committee of Shaanxi Province (Grant No 02JK050)
文摘This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.
基金supported by the National Natural Science Foundation of China (Grant No. 10375028)
文摘In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.
基金Project supported by the Scientific Research Plan Foundation of Sichuan Education Department of China(Grant No.2014JY0072)
文摘Equilibrium geometries, stabilities, and electronic properties of small TimZrn(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H2 when compared with the others except Ti3Zr, which shows the highest activity. The magnetic moments of TimZrn and TimZrnH2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti3Zr2.
基金Supported by the National Natural Science Foundation of China (No. 20503021)National Basic Research Program of China (2007CB815301)
文摘A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.
基金the Key Program of Guangzhou Educational Bureau in the Eleventh Five-Year Plan, No. 06TJZ014
文摘BACKGROUND: Multiple linear regression, general linear test and calculation of correlation values are commonly used in studies of brain function using functional magnetic resonance imaging (fMRI). However, there are some limitations in their applications. In non-signal data statistics, cluster analysis functions as a very mature method, but it is not reliable in signal data statistics. OBJECTIVE: To investigate the spatial distribution of complex function in brain areas during motor tasks by cluster analysis, and to compare this with multiple linear regression. DESIGN, TIME AND SETTING: Block design, performed at the MR laboratory of Guangzhou University of Chinese Medicine. PARTICIPANTS: Fifteen right-handed, healthy university students (10 males and 5 females, aged 19-21 years). METHODS: fMRI was performed while the subjects performed a finger movement task with the right hand. The screen showed a gray hand, with red spots presented in a random order on one of the index, middle, ring and little fingers. The subjects were required to remember the sequence of the red spots on the display. After a delay of 14 seconds, the subjects tapped their fingers according to the order of the red spots, as soon as the red spots turned green. After an interval of 14 seconds, another sequence appeared. Every sequence lasted for 28 seconds, including preparation and execution phases. A total of nine sequences per subject were performed. The data were analyzed using deconvolution and cluster methods, and program "cluster" was used to statistically analyze the coordinate positions of deconvolution and cluster data. MAIN OUTCOME MEASURES: Brain activation maps by deconvolution and brain function maps by clustering of the maximum peak values; blood oxygenation level dependent curves by deconvolution; coordinates of peak values and activation volumes by the two methods. RESULTS: The deconvolution method could not integrate the brain activation maps during different tasks into one activation picture, which made it difficult to identify exactly the spatial distribution of various activities in certain brain areas. Cluster analysis, using maximum peak values, clearly showed brain areas of monofunction and multifunction, even complex function, and presented a clear spatial distribution of multiple functional movements. Using the command "clust" with the same parameters, the volumes of main brain activation areas were consistent, indicating the maximum peak values are completely reliable in contrast to the deconvolution method. CONCLUSION: Cluster analysis is conducive to the analysis of multifunctional complex areas. Clustering using maximum peak values is a reliable method. Brain areas, such as primary motor cortex, supplementary motor area, and posterior parietal cortex, are not monofunctional areas, but multifunctional, complex ones. The activation maps derived by deconvolution statistics are distributed in many maps, which are not convenient to determine the functional distribution of complex brain areas.
基金Project supported by the Foundation from the Education Commission of Sichuan Province,China (Grant No. 2006B042)
文摘The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copperdoped gold clusters, AunCu (n = 1-7), are investigated using the density functional theory. Several low-lying isomers are determined. The results indicate that the ground-state AunCu clusters have planar structures for n = 1-7. The stability trend of the AunCu clusters (n = 1-7), shows that odd-numbered AunCu clusters are more stable than the neighbouring even-numbered ones, thereby indicating the AusCu clusters are magic cluster with high chemical stability.
文摘In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms.
文摘The properties of the modified surface of SnO2(110) with benzoic acid (Y-C6H4-COOH: Y is para position relative to -COOH group) derivatives were investigated using density functional theory. Zehner et al. mentioned that the modification of surface dipole moment made it possible to tune the work function of the system. The experiment of Ganzorig et al. showed that there was a linear relationship between the dipole moment of the binding molecule and the work function change of the system using the modified surface of indium-tin oxide (ITO) with some benzoic acid derivatives. To elucidate the relation between the dipole moment of the molecule and the work function change, we investigated the modified surface of SnO2(110) using Sn7O14 cluster model which was embedded in the fixed point charges. On the modification of the surface, benzoic acid derivatives were bound to SnO2 surface. By changing the terminal group of benzoic acid with H, Cl, F, CF3 and CCl3, the work function changed and the dipole moment of the binding molecules of the modified SnO2(110) were evaluated. The results showed that there was a linear relationship between the dipole moment of the binding molecules and the work function changed. From this relation, the average value of the dipole moments of Sn-OOC linkage at the surface was also evaluated.
文摘According to the characteristics of the correlation of multiple wind farm output, this paper put forwards a modeling method based on fuzzy c-means clustering and the copula function, and correlation wind farms are inserted into IEEE-RTS79 reliability system for risk assessment. By the probabilistic load flow calculated by Monte Carlo simulation method, the probability of the accident is derived, and bus voltage and branch power flow overload risk index are defined in this paper. The results show that this method can realize the modeling of the correlation of wind power output, and the risk index can identify the weakness of the system, which can provide reference for the operation and maintenance personnel.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.
基金Supported by the NNSFC (20673019, 20773024)the funds of Fuzhou University (2008-XQ-07, XRC-0732)
文摘A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to the even-odd alternation in relation to the number of gold atoms in the cluster. The HCN molecule is adsorbed at simple adsorption sites (1-fold coordination), perpendicular to the adsorption site. The largest adsorption energy is only about 74.61 kJ·mol^-1, which indicates that the HCN molecule does not decompose and the C-N bond retains triple bond, and that the C-H and C-N stretching frequencies are only weakly perturbed. The adsorbed C-N and C-H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.
文摘The general features of the geometries and electronic properties for 3d, 4d, and 5d transition-metal atom doped Au6 clusters are systematically investigated by using relativistic all-electron density functional theory in the generalized gradient approximation (CGA). A number of structural isomers are considered to search the lowest-energy structures of M@Au6 clusters (M=3d, 4d and 5d transition-metal atoms), and the transition metal atom locating in the centre of an Au6 ring is found to be in the ground state for all the M@Au6 clusters. All doped clusters, expect for Pd@Au6, show large relative binding energies compared with a pure Au7 cluster, indicating that doping by 3d, 4d, 5d transition-metal atoms could stabilize the Au6 ring and promote the formation of a new binary alloy cluster.
基金Project supported by the Doctoral Education Fund of the Education Ministry of Chain (Grant No. 20100181110086) and the National Natural Science Foundation of China (Grant Nos. 11104190 and 10974138).
文摘The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density functional theory. The optimized geometries reveal that for 2 ≤ n ≤ 7, there are significant similarities in geometry among pure Agn, Nan, and Lin clusters, and the transitions from planar to three-dimensional configurations occur at n = 7, 7, and 6, respectively. In contrast, the first three-dimensional (3D) structures are observed at n + m = 5 for both NanAgm and LinAgm clusters. When n + m ≥5, a striking feature is that the trigonal bipyramid becomes the main subunit of LinAgm. Furthermore, dramatic odd-even alternative behaviours are obtained in the fragmentation energies, secondorder difference energies, highest occupied and lowest unoccupied molecular orbital energy gaps, and chemical hardness for both pure and doped clusters. The analytic results exhibit that clusters with an even electronic configuration (2, 4, 6) possess the weakest chemical reactivity and more enhanced stability.