期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
Frequent Pattern Growth-Based Identification of Critical Lines in Cascading Failures for Renewable-Dominant Hybrid AC/DC Power Systems
1
作者 Tianhao Liu Jiongcheng Yan Yutian Liu 《Engineering》 2025年第8期158-170,共13页
In wind and solar renewable-dominant hybrid alternating current/direct current(AC/DC)power systems,the active power of high-voltage direct current(HVDC)system is significantly limited by the security and stability eve... In wind and solar renewable-dominant hybrid alternating current/direct current(AC/DC)power systems,the active power of high-voltage direct current(HVDC)system is significantly limited by the security and stability events caused by cascading failures.To identify critical lines in cascading failures,a rapid risk assessment method is proposed based on the gradient boosting decision tree(GBDT)and frequent pat-tern growth(FP-Growth)algorithms.First,security and stability events triggered by cascading failures are analyzed to explain the impact of cascading failures on the maximum DC power.Then,a cascading failure risk index is defined,focusing on the DC power being limited.To handle the strong nonlinear relationship between the maximum DC power and cascading failures,a GBDT with an update strategy is utilized to rapidly predict the maximum DC power under uncertain operating conditions.Finally,the FP-Growth algorithm is improved to mine frequent patterns in cascading failures.The importance index for each fault in a frequent pattern is defined by evaluating its impact on cascading failures,enabling the identification of critical lines.Simulation results of a modified Ningxia–Shandong hybrid AC/DC system in China demonstrate that the proposed method can rapidly assess the risk of cascading failures and effectively identify critical lines. 展开更多
关键词 Cascading failure Risk assessment frequent pattern Hybrid AC/DC power system Renewable energy
在线阅读 下载PDF
A New Algorithm for Mining Frequent Pattern 被引量:2
2
作者 李力 靳蕃 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期10-20,共11页
Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidat... Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth. 展开更多
关键词 data mining algorithm frequent pattern set FP growth
在线阅读 下载PDF
An Efficient Hybrid Algorithm for Mining Web Frequent Access Patterns 被引量:1
3
作者 ZHANLi-qiang LIUDa-xin 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期557-560,共4页
We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns. WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and tri... We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns. WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and trimming database. Whenever the database is trimmed to a size less than a specified threshold, the algorithm puts the database into main memory by constructing a tree, and finds frequent patterns on the tree. The experiment shows that WDHP outperform algorithm DHP and main memory based algorithm WAP in execution efficiency. 展开更多
关键词 frequent access pattern AP-tree hash-table
在线阅读 下载PDF
A Novel Incremental Mining Algorithm of Frequent Patterns for Web Usage Mining 被引量:1
4
作者 DONG Yihong ZHUANG Yueting TAI Xiaoying 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期777-782,共6页
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a... Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision. 展开更多
关键词 incremental algorithm association rule frequent pattern tree web usage mining
在线阅读 下载PDF
Hybrid Reliability Parameter Selection Method Based on Text Mining, Frequent Pattern Growth Algorithm and Fuzzy Bayesian Network 被引量:1
5
作者 SHUAI Yon SONG Tailian +1 位作者 WANG Jianping ZHAN Wenbin 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第3期423-428,共6页
Reliability parameter selection is very important in the period of equipment project design and demonstration. In this paper, the problem in selecting the reliability parameters and their number is proposed. In order ... Reliability parameter selection is very important in the period of equipment project design and demonstration. In this paper, the problem in selecting the reliability parameters and their number is proposed. In order to solve this problem, the thought of text mining is used to extract the feature and curtail feature sets from text data firstly, and frequent pattern tree (FPT) of the text data is constructed to reason frequent item-set between the key factors by frequent patter growth (FPC) algorithm. Then on the basis of fuzzy Bayesian network (FBN) and sample distribution, this paper fuzzifies the key attributes, which forms associated relationship in frequent item-sets and their main parameters, eliminates the subjective influence factors and obtains condition mutual information and maximum weight directed tree among all the attribute variables. Furthermore, the hybrid model is established by reason fuzzy prior probability and contingent probability and concluding parameter learning method. Finally, the example indicates the model is believable and effective. 展开更多
关键词 reliability parameter text mining frequent pattern growth(FPG) fuzzy Bayesian network(FBN)
原文传递
Mining Maximal Frequent Patterns in a Unidirectional FP-tree 被引量:1
6
作者 宋晶晶 刘瑞新 +1 位作者 王艳 姜保庆 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期105-109,共5页
Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model ... Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space. 展开更多
关键词 data mining frequent pattern the maximal frequent pattern Unid _ FP-tree conditional Unid _ FP-tree.
在线阅读 下载PDF
GTK:A Hybrid-Search Algorithm of Top-Rank-k Frequent Patterns Based on Greedy Strategy 被引量:1
7
作者 Yuhang Long Wensheng Tang +4 位作者 Bo Yang Xinyu Wang Hua Ma Hang Shi Xueyu Cheng 《Computers, Materials & Continua》 SCIE EI 2020年第6期1445-1469,共25页
Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding k.In the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to t... Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding k.In the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to the delay of high rank patterns generation,resulting in the slow growth of the support threshold and the mining efficiency.Aiming at this problem,a greedy-strategy-based top-rank-k frequent patterns hybrid mining algorithm(GTK)is proposed in this paper.In this algorithm,top-rank-k patterns are stored in a static doubly linked list called RSL,and the patterns are divided into short patterns and long patterns.The short patterns generated by a rank-first-search always joins the two patterns of the highest rank in RSL that have not yet been joined.On the basis of the short patterns satisfying specific conditions,the long patterns are extracted through level-wise-search.To reduce redundancy,GTK improves the generation method of subsume index and designs the new pruning strategies of candidates.This algorithm also takes the use of reasonable pruning strategies to reduce the amount of computation to improve the computational speed.Real datasets and synthetic datasets are adopted in experiments to evaluate the proposed algorithm.The experimental results show the obvious advantages in both time efficiency and space efficiency of GTK. 展开更多
关键词 Top-rank-k frequent patterns greedy strategy hybrid-search
在线阅读 下载PDF
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining 被引量:1
8
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 Data Mining Association Rule Mining frequent pattern Apriori Algorithm Quantum Counter Quantum Comparator Grover’s Search Algorithm
在线阅读 下载PDF
Fast Discovering Frequent Patterns for Incremental XML Queries
9
作者 PENGDun-lu QIUYang 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期638-646,共9页
It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequ... It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing. 展开更多
关键词 XML frequent query pattern incremental algorithm data mining
在线阅读 下载PDF
High Utility Periodic Frequent Pattern Mining in Multiple Sequences
10
作者 Chien-Ming Chen Zhenzhou Zhang +1 位作者 Jimmy Ming-Tai Wu Kuruva Lakshmanna 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期733-759,共27页
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pa... Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns. 展开更多
关键词 Decision making frequent periodic pattern multi-sequence database sequential rules utility mining
在线阅读 下载PDF
Adaptive associative classification with emerging frequent patterns
11
作者 Wang Xiaofeng Zhang Dapeng Shi Zhongzhi 《High Technology Letters》 EI CAS 2012年第1期38-44,共7页
In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM... In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively. 展开更多
关键词 associative classification RULE frequent pattern mining emerging frequent pattern supportvector machine (SVM)
在线阅读 下载PDF
Association RuleMining Frequent-Pattern-Based Intrusion Detection in Network
12
作者 S.Sivanantham V.Mohanraj +1 位作者 Y.Suresh J.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1617-1631,共15页
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da... In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI. 展开更多
关键词 IDS K-MEANS frequent pattern tree false alert MINING L1-norm
在线阅读 下载PDF
SWFP-Miner: an efficient algorithm for mining weighted frequent pattern over data streams
13
作者 Wang Jie Zeng Yu 《High Technology Letters》 EI CAS 2012年第3期289-294,共6页
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque... Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner. 展开更多
关键词 weighted frequent pattern (WFP) mining data streams data mining slidingwindow SWFP-Miner
在线阅读 下载PDF
A related degree-based frequent pattern mining algorithm for railway fault data
14
作者 Jiaxu Guo Ding Ding +2 位作者 Peihan Yang Qi Zou Yaping Huang 《High-Speed Railway》 2024年第2期101-109,共9页
It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq... It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies. 展开更多
关键词 High utility QUANTITATIVE frequent pattern mining Related degree pruning Fixed pattern length
在线阅读 下载PDF
Novel Algorithm for Mining Frequent Patterns of Moving Objects Based on Dictionary Tree Improvement
15
作者 Yi Chen Yulan Dong Dechang Pi 《国际计算机前沿大会会议论文集》 2018年第1期20-20,共1页
在线阅读 下载PDF
New algorithm of mining frequent closed itemsets
16
作者 张亮 任永功 付玉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期335-338,共4页
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory an... A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems. This algorithm maps the transaction database by using a Hash table,gets the support of all frequent itemsets through operating the Hash table and forms a lexicographic subset tree including the frequent itemsets.Efficient pruning methods are used to get the FC-tree including all the minimum frequent closed itemsets through processing the lexicographic subset tree.Finally,frequent closed itemsets are generated from minimum frequent closed itemsets.The experimental results show that the mapping transaction database is introduced in the algorithm to reduce time consumption and to improve the efficiency of the program.Furthermore,the effective pruning strategy restrains the number of candidates,which saves space.The results show that the algorithm is effective. 展开更多
关键词 frequent itemsets frequent closed itemsets minimum frequent closed itemsets maximal frequent closed itemsets frequent closed pattern tree
在线阅读 下载PDF
On-site stormwater detention for Australian development projects: Does it meet frequent flow management objectives? 被引量:1
17
作者 Rodney Ronalds Alex Rowlands Hong Zhang 《Water Science and Engineering》 EI CAS CSCD 2019年第1期1-10,共10页
On-site stormwater detention (OSD) is a conventional component of urban drainage systems, designed with the intention of mitigating the increase to peak discharge of stormwater runoff that inevitably results from urba... On-site stormwater detention (OSD) is a conventional component of urban drainage systems, designed with the intention of mitigating the increase to peak discharge of stormwater runoff that inevitably results from urbanization. In Australia, singular temporal patterns for design storms have governed the inputs of hydrograph generation and in turn the design process of OSD for the last three decades. This paper raises the concern that many existing OSD systems designed using the singular temporal pattern for design storms may not be achieving their stated objectives when they are assessed against a variety of alternative temporal patterns. The performance of twenty real OSD systems was investigated using two methods:(1) ensembles of design temporal patterns prescribed in the latest version of Australian Rainfall and Runoff, and (2) real recorded rainfall data taken from pluviograph stations modeled with continuous simulation. It is shown conclusively that the use of singular temporal patterns is ineffective in providing assurance that an OSD will mitigate the increase to peak discharge for all possible storm events. Ensemble analysis is shown to provide improved results. However, it also falls short of providing any guarantee in the face of naturally occurring rainfall. 展开更多
关键词 STORMWATER DETENTION frequent flow management Temporal patterns RUNOFF routing Continuous simulation South East Queensland
在线阅读 下载PDF
A Novel Approach for Clustering Periodic Patterns
18
作者 Fokrul Alom Mazarbhuiya 《International Journal of Intelligence Science》 2017年第1期1-8,共8页
The process of extracting patterns that are frequent from supermarket datasets is a well known problem of data mining. Nowadays, we have many approaches to resolve the problem. Association rule mining is one among the... The process of extracting patterns that are frequent from supermarket datasets is a well known problem of data mining. Nowadays, we have many approaches to resolve the problem. Association rule mining is one among them. Supermarket data are usually temporal in nature as they record all the transactions in the supermarket, with the time of occurrence. An algorithm has been proposed to find frequent itemsets, taking the temporal attributes in supermarket dataset. The best part of the algorithm is that each frequent itemset extracted by it is associated with a list of time intervals in which it is frequent. Taking time of transactions as calendar dates, we may get various types of periodic patterns viz. yearly, quarterly, monthly, etc. If the time intervals associated with a periodic itemset are kept in a compact manner, it turns out to be a fuzzy time interval. Clustering of such patterns can be a useful data mining problem. In this paper, we put forward an agglomerative hierarchical clustering algorithm which is able to extracts clusters among such periodic itemsets. Here we take two similarity measures, one on the itemsets of the clusters and others on the corresponding fuzzy time intervals. The efficiency of the proposed method is demonstrated through experimentation on real datasets. 展开更多
关键词 pattern Mining TEMPORAL patternS LOCALLY frequent patternS SUPERIMPOSITION of INTERVALS Fuzzy Time-Interval
暂未订购
Hybrid Recommender System Using Systolic Tree for Pattern Mining
19
作者 S.Rajalakshmi K.R.Santha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1251-1262,共12页
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in... A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved. 展开更多
关键词 Recommender systems hybrid recommender systems frequent pattern mining collaborativefiltering systolic tree river formation dynamics particle swarm optimization
在线阅读 下载PDF
Knowledge Acquisition from Forestry Machinery Patent Based on the Algorithm for Closed Weighted Pattern Mining
20
作者 Huiling Yu Jie Guo +2 位作者 Dongyan Shi Guangsheng Chen Shanshan Cui 《国际计算机前沿大会会议论文集》 2015年第1期93-94,共2页
The application of big data mining can create over a trillion dollars value. Patents contain a great deal of new technologies and new methods which have unique value in the product innovation. In order to improve the ... The application of big data mining can create over a trillion dollars value. Patents contain a great deal of new technologies and new methods which have unique value in the product innovation. In order to improve the effectiveness of big data mining and aid the innovation of products of forestry machinery, the algorithm for closed weighted pattern mining is applied to acquire the function knowledge in the patents of forestry machinery. Compared with the other algorithms for mining patterns, the algorithm is more suitable for the characteristics of patent data. It not only takes into account the importance of different items to reduce the search space effectively, but also avoids achieving excessive uninteresting patterns below the premise that assures quality. The extensive performance study shows that the patterns which are mined by the closed weighted pattern algorithm are more representative and the acquired knowledge has more realistic application significance. 展开更多
关键词 FORESTRY MACHINERY PATENT Knowledge acquisition CLOSED frequent pattern WEIGHTED frequent pattern
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部