期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
A Novel Incremental Mining Algorithm of Frequent Patterns for Web Usage Mining 被引量:1
1
作者 DONG Yihong ZHUANG Yueting TAI Xiaoying 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期777-782,共6页
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a... Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision. 展开更多
关键词 incremental algorithm association rule frequent pattern tree web usage mining
在线阅读 下载PDF
基于改进的FP-tree的频繁模式挖掘算法 被引量:21
2
作者 李也白 唐辉 +1 位作者 张淳 贺玉明 《计算机应用》 CSCD 北大核心 2011年第1期101-103,共3页
FP-growth算法是一种基于FP-tree数据结构的高效的频繁模式挖掘算法,它不产生候选集。构造频繁模式树FP-tree需扫描数据库两次,在第二遍扫描中还扫描了那些仅包含了非频繁项的事务,针对此问题,在深入分析了FP-tree特性的基础上,改进了FP... FP-growth算法是一种基于FP-tree数据结构的高效的频繁模式挖掘算法,它不产生候选集。构造频繁模式树FP-tree需扫描数据库两次,在第二遍扫描中还扫描了那些仅包含了非频繁项的事务,针对此问题,在深入分析了FP-tree特性的基础上,改进了FP-tree构造过程,同时用一种基于Hash表的辅助存储结构,节省了项目查找时间,提高了挖掘效率。 展开更多
关键词 数据挖掘 关联规则 频繁模式 FP—growth算法 FP—tree
在线阅读 下载PDF
基于FP-tree的快速挖掘全局最大频繁项集算法 被引量:2
3
作者 何波 《计算机集成制造系统》 EI CSCD 北大核心 2011年第7期1547-1552,共6页
挖掘最大频繁项集的算法多基于局部数据库,为此提出了一种基于频繁模式树的快速挖掘全局最大频繁项集算法。该算法首先挖掘出所有全局频繁项目组成集合,然后各个节点根据该集合构建局部频繁模式树,最后将该集合作为全局最大频繁候选项集... 挖掘最大频繁项集的算法多基于局部数据库,为此提出了一种基于频繁模式树的快速挖掘全局最大频繁项集算法。该算法首先挖掘出所有全局频繁项目组成集合,然后各个节点根据该集合构建局部频繁模式树,最后将该集合作为全局最大频繁候选项集,采用自顶向下策略挖掘出所有的全局最大频繁项集。与类Apriori算法相比,该算法采用的频繁模式树结构能大幅度降低数据库扫描次数和运行时间;自顶向下的策略能大幅度减少候选项集数和通信量。实验结果表明,该算法是快速和高效的。 展开更多
关键词 数据挖掘 频繁模式树 全局最大频繁项集 算法
在线阅读 下载PDF
基于FP-tree目录分割自适应算法
4
作者 陆楠 杜文峰 梁正平 《深圳大学学报(理工版)》 EI CAS 北大核心 2011年第4期341-346,共6页
研究面向顾客的商业智能目录分割问题,要求顾客对收到的目录至少有兴趣度t,并评估满足最小兴趣度的顾客数量.为优化评估效果,构建频繁模式树结构FP-tree存储顾客数据库,给出MCC-CS算法解决目录分割问题,该算法使用树深度遍历法选择目录... 研究面向顾客的商业智能目录分割问题,要求顾客对收到的目录至少有兴趣度t,并评估满足最小兴趣度的顾客数量.为优化评估效果,构建频繁模式树结构FP-tree存储顾客数据库,给出MCC-CS算法解决目录分割问题,该算法使用树深度遍历法选择目录产品.经验证,该算法能够获得更好的商业目标. 展开更多
关键词 数据挖掘 目录分割 顾客覆盖 频繁模式树 自适应算法
在线阅读 下载PDF
压缩FP-Tree的改进搜索算法 被引量:8
5
作者 吴倩 罗健旭 《计算机工程与设计》 北大核心 2015年第7期1771-1777,共7页
为克服Apriori算法候选频繁项集的支持数计算效率过低和频繁模式增长算法FP-Growth多次建立条件模式树时内存耗费大的问题,提出基于压缩频繁模式树(CFP-Tree)的改进搜索算法(MCFP-Tree)。利用Apriori算法候选项集生成的思想和压缩频繁... 为克服Apriori算法候选频繁项集的支持数计算效率过低和频繁模式增长算法FP-Growth多次建立条件模式树时内存耗费大的问题,提出基于压缩频繁模式树(CFP-Tree)的改进搜索算法(MCFP-Tree)。利用Apriori算法候选项集生成的思想和压缩频繁模式树紧凑的数据结构,采用自底向上的搜索策略,快速挖掘压缩频繁模式树及其子树,更快得到候选项集的支持数。实验结果表明,该算法可以高效计算出候选频繁项集出现的频次,挖掘效率明显优于Apriori和FPGrowth算法。 展开更多
关键词 数据挖掘 关联规则 压缩频繁模式树 APRIORI算法 频繁模式增长算法
在线阅读 下载PDF
基于频繁模式树和深度学习的频繁项集挖掘算法 被引量:1
6
作者 李洋 李华 《黑龙江工业学院学报(综合版)》 2025年第1期94-98,共5页
随着数据量的急剧增长,从海量数据中挖掘有价值的信息变得尤为重要。频繁项集挖掘作为数据挖掘的一个关键领域,旨在识别数据集中频繁出现的项集,这些项集能够揭示数据间的内在联系,并为后续的高级分析提供基础。然而,传统的频繁项集挖... 随着数据量的急剧增长,从海量数据中挖掘有价值的信息变得尤为重要。频繁项集挖掘作为数据挖掘的一个关键领域,旨在识别数据集中频繁出现的项集,这些项集能够揭示数据间的内在联系,并为后续的高级分析提供基础。然而,传统的频繁项集挖掘算法在处理大规模数据集时面临准确性和效率的挑战。为了解决这些问题,本研究提出频繁模式树和深度学习的新型频繁项集挖掘算法。该算法首先利用深度置信网络提取数据的高级特征,然后基于这些特征构建频繁模式树,以高效挖掘频繁项集。实验结果表明,该算法在查全率和查准率方面均表现优异,查全率高达97.56%,查准率高达95.49%,显示出其在实际应用中的高准确性和广泛适用性。 展开更多
关键词 频繁模式树 深度学习 频繁项集 数据挖掘 挖掘算法
在线阅读 下载PDF
基于加权频繁模式树的通信网络告警规则挖掘方法 被引量:14
7
作者 罗明 孟传伟 黄海量 《计算机工程》 CAS CSCD 北大核心 2016年第4期190-196,共7页
传统通信网络告警处理方法主要由维护专家依据经验判断形成处理规则并固化在网络告警系统中进行实现,然而该人工维护方式难以适应海量数据环境下实时通信告警规则的处理需求。为此,提出一种基于加权频繁模式树(WFP-tree)算法的告警规则... 传统通信网络告警处理方法主要由维护专家依据经验判断形成处理规则并固化在网络告警系统中进行实现,然而该人工维护方式难以适应海量数据环境下实时通信告警规则的处理需求。为此,提出一种基于加权频繁模式树(WFP-tree)算法的告警规则自动挖掘方法,将原始告警数据按时间窗口方式进行分段处理,通过BP神经网络、支持向量机、层次分析法生成告警设备的权重信息,并采用WFP-tree算法自动挖掘加权频繁项集。实验结果表明,与传统Apriori和FP-growth算法相比,WFP-tree算法在通信网络告警分析方面具有更好的频繁项压缩效果及更强的重要关联规则发现能力。 展开更多
关键词 通信网络告警 关联规则 权重因子 加权频繁项集 FP-GROWTH算法 加权频繁模式树算法 支持度
在线阅读 下载PDF
集成元规则和FP-增长树方法的多层空间关联规则挖掘算法 被引量:3
8
作者 万鲁河 刘万宇 崔金香 《小型微型计算机系统》 CSCD 北大核心 2008年第4期715-719,共5页
在分析典型的空间关联规则算法的基础上,针对规则冗余和挖掘伸缩性差的不足,提出基于元规则和FP增长树的空间关联规则挖掘算法,该算法不用产生候选集合,而使用最不频繁的项后缀,减少了扫描数据库的次数,大大降低了搜索开销;同时,元规则... 在分析典型的空间关联规则算法的基础上,针对规则冗余和挖掘伸缩性差的不足,提出基于元规则和FP增长树的空间关联规则挖掘算法,该算法不用产生候选集合,而使用最不频繁的项后缀,减少了扫描数据库的次数,大大降低了搜索开销;同时,元规则的约束,提供了好的选择性,减少了规则的冗余.本文最后以水土流失的空间要素的关联关系为例,验证算法的有效性,并与典型算法比较,本文提出的算法时间性能和空间伸缩性均优于典型算法. 展开更多
关键词 空间关联规则 FP-增长树方法 元规则
在线阅读 下载PDF
分布环境中的并行频繁模式挖掘算法 被引量:3
9
作者 阮幼林 李庆华 刘干 《计算机工程与应用》 CSCD 北大核心 2005年第25期1-3,22,共4页
频繁模式的并行挖掘算法是数据挖掘中重要的研究课题。目前已经提出的并行算法大多是基于Apriori或基于FP-tree。由于两者的固有局限性,而且在计算过程中需要多次同步,因而具有较低的性能。文章提出了一种基于分布数据库的并行挖掘算法... 频繁模式的并行挖掘算法是数据挖掘中重要的研究课题。目前已经提出的并行算法大多是基于Apriori或基于FP-tree。由于两者的固有局限性,而且在计算过程中需要多次同步,因而具有较低的性能。文章提出了一种基于分布数据库的并行挖掘算法。该算法尽可能地让每个处理器独立地挖掘,每个处理器基于前缀树采用深度优先搜索的策略挖掘局部频繁模式集,并通过相关性质尽量减少候选全局频繁模式的规模,减少网络的通信量和同步次数以提高挖掘效率。 展开更多
关键词 频繁模式 并行算法 前缀树 全局频繁模式
在线阅读 下载PDF
分布式存储结构的频繁闭合模式挖掘并行算法 被引量:3
10
作者 缪裕青 尹东 《微电子学与计算机》 CSCD 北大核心 2007年第10期161-163,共3页
研究分布式存储结构下频繁闭合模式挖掘的并行化问题,针对频繁闭合模式的特点,提出了两阶段并行判断频繁模式闭合性的方法,基于串行算法FPclose和两种FP-tree的并行构造方式,分别给出了两个频繁闭合模式挖掘并行算法DP-FP和DL-FP,性能... 研究分布式存储结构下频繁闭合模式挖掘的并行化问题,针对频繁闭合模式的特点,提出了两阶段并行判断频繁模式闭合性的方法,基于串行算法FPclose和两种FP-tree的并行构造方式,分别给出了两个频繁闭合模式挖掘并行算法DP-FP和DL-FP,性能分析表明,这两个算法具有较大的并行化,较小的I/O开销与良好的负载平衡。 展开更多
关键词 关联规则 频繁模式 频繁闭合模式 FP-tree 并行算法
在线阅读 下载PDF
挖掘不确定数据的最大频繁项集 被引量:2
11
作者 唐向红 杨全纬 郑阳 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期29-34,共6页
针对不确定数据频繁项集挖掘效率低和准确度不高的问题,提出了一种基于改进的频繁模式树(FPtree)和遗传算法(GA)挖掘不确定数据概率频繁项集的方法,即UFPGA(基于频繁模式树和遗传的挖掘算法).该算法根据不确定数据的构成特征,改进频繁... 针对不确定数据频繁项集挖掘效率低和准确度不高的问题,提出了一种基于改进的频繁模式树(FPtree)和遗传算法(GA)挖掘不确定数据概率频繁项集的方法,即UFPGA(基于频繁模式树和遗传的挖掘算法).该算法根据不确定数据的构成特征,改进频繁模式树方法挖掘不确定数据频繁项集,采用缩小变异空间和增加育种算子的遗传算法搜索最大频繁项集,收缩了搜索范围,提高了挖掘效率.实验结果表明:该方法在时间复杂度方面有很好的优越性,对大规模的不确定数据挖掘提供了一种有效的技术手段. 展开更多
关键词 数据挖掘 不确定数据 频繁项集 最大频繁项集 频繁模式树 遗传算法
原文传递
基于IS~±树模型的频繁模式挖掘 被引量:3
12
作者 马海兵 张成洪 +1 位作者 张锦 胡运发 《计算机研究与发展》 EI CSCD 北大核心 2005年第4期588-593,共6页
IS-树是一种新型的全文存储索引模型.提出一种基于扩展I-S树模型的频繁模式挖掘算法.和FPgrowth方法一样,算法直接构造频繁项集,不进行Apriori算法所采用的代价很高的候选集产生与测试操作.然而它比FP-树模型具有更多的优点:只需扫描一... IS-树是一种新型的全文存储索引模型.提出一种基于扩展I-S树模型的频繁模式挖掘算法.和FPgrowth方法一样,算法直接构造频繁项集,不进行Apriori算法所采用的代价很高的候选集产生与测试操作.然而它比FP-树模型具有更多的优点:只需扫描一遍事务库;挖掘任务只局部关联于一棵根树;动态更新性好,仅做增量变化.实验表明,其具有与FP-growth算法相当甚至更高的效率.更重要的是,IS+树模型同时是一种事务库的良好索引形式,具有高效支持事务查询的能力. 展开更多
关键词 频繁模式 APRIORI算法 FP—growth算法 IS-树 IS^+-树
在线阅读 下载PDF
基于数据流的大图中频繁模式挖掘算法研究 被引量:7
13
作者 汤小春 樊雪枫 +1 位作者 周佳文 李战怀 《计算机学报》 EI CSCD 北大核心 2020年第7期1293-1311,共19页
随着单个图数据规模的扩大以及应用领域的扩展,大规模单图的频繁模式挖掘的需求越来越强烈.传统的单机环境已经无法满足大规模图数据挖掘的要求,而现有的并行或者分布式环境下的挖掘方法,普遍受到并行性以及数据倾斜等问题的限制,论文... 随着单个图数据规模的扩大以及应用领域的扩展,大规模单图的频繁模式挖掘的需求越来越强烈.传统的单机环境已经无法满足大规模图数据挖掘的要求,而现有的并行或者分布式环境下的挖掘方法,普遍受到并行性以及数据倾斜等问题的限制,论文在分析了现有的频繁模式挖掘算法后,提出了一种基于数据流的单个大图频繁模式挖掘方法.首先,建立基于数据流的频繁模式挖掘模型,将MapReduce模型中的“批”数据变成“微批”数据,提高了数据处理的并行度,并且其迭代方式也满足频繁子图挖掘的反单调性;其二,设计了数据流模型中的频繁模式检查、子图实例扩展以及正规编码计算等操作,实现了基于数据流模型的频繁模式挖掘算法;其三,为解决正规编码计算中的复杂性问题,提出了基于不变关系的正规编码计算策略以及基于编码树的优化策略,优化正规编码比未优化编码的计算性能提升了30%,基于编码树的优化策略比原始编码计算策略在性能上提升了10%;最后,对涉及的相关算法进行了实验测试,实验证明,算法提高了频繁模式挖掘的并行性,大幅度减少了大图的搜索空间,降低了正规编码的计算时间,相比于传统算法大规模单图中频繁模式挖掘的效率提升了30%. 展开更多
关键词 图挖掘 频繁模式 数据流模型 并行算法 编码树
在线阅读 下载PDF
基于最大频繁项集的聚类算法 被引量:1
14
作者 张伟 张泽洪 《江南大学学报(自然科学版)》 CAS 2007年第3期288-292,共5页
鉴于高维数据的稀疏性和分类数据特点,探讨了专门针对高维分类数据的聚类方法.首先将原始数据集转换成频繁项集,再通过改造频繁模式树以及给出的剪切策略,挖掘出事务的最大频繁项集,并基于最大频繁项集(MFI)的两个属性,将具有相同MFI的... 鉴于高维数据的稀疏性和分类数据特点,探讨了专门针对高维分类数据的聚类方法.首先将原始数据集转换成频繁项集,再通过改造频繁模式树以及给出的剪切策略,挖掘出事务的最大频繁项集,并基于最大频繁项集(MFI)的两个属性,将具有相同MFI的对象归于一类,由此提出了基于最大频繁项集的聚类算法.通过对分类数据集的实验,表明该算法具有相当的稳定性、健壮性和有效性. 展开更多
关键词 高维分类数据 最大频繁项集 频繁模式树 投影聚类算法
在线阅读 下载PDF
基于有序树的不确定数据最大频繁项挖掘算法 被引量:7
15
作者 刘卫明 蒯海龙 +1 位作者 陈志刚 毛伊敏 《计算机工程与应用》 CSCD 北大核心 2015年第24期145-149,共5页
针对UF-tree中项集存在的数据和路径冗余的问题,设计了有序的压缩不确定树SCUF-tree,在节点中存储元素的不同支持度,达到压缩存储空间和方便移植已有的确定数据最大频繁项集算法的目的。结合最大频繁项集挖掘算法MMFI的设计思想,提出了... 针对UF-tree中项集存在的数据和路径冗余的问题,设计了有序的压缩不确定树SCUF-tree,在节点中存储元素的不同支持度,达到压缩存储空间和方便移植已有的确定数据最大频繁项集算法的目的。结合最大频繁项集挖掘算法MMFI的设计思想,提出了一种挖掘不确定最大频繁项集算法UMMFI算法,并采取逐层逐个的NBN策略挖掘不确定最大频繁项集。实验结果表明,UMMFI算法具有较好的时空效益和适应性。 展开更多
关键词 不确定数据的最大频繁项集 不确定数据最大频繁项挖掘(UMMFI)算法 有序的压缩不确定树(SCUF-tree) 逐层逐个地处理节点(NBN)策略
在线阅读 下载PDF
基于最长频繁闭项集的聚类算法 被引量:2
16
作者 张泽洪 张伟 《计算机工程》 CAS CSCD 北大核心 2007年第1期187-189,192,共4页
针对许多算法不适合对分类数据进行聚类的特点,提出了一种基于最长频繁闭项集(LFCI)的聚类算法。使用改造后的频繁模式树,得到每个事务的LFCI,由于LFCI的两个重要属性,因此可以将LFCI作为该事务的描述,从而直接得到聚类结果。实验证明... 针对许多算法不适合对分类数据进行聚类的特点,提出了一种基于最长频繁闭项集(LFCI)的聚类算法。使用改造后的频繁模式树,得到每个事务的LFCI,由于LFCI的两个重要属性,因此可以将LFCI作为该事务的描述,从而直接得到聚类结果。实验证明了该算法的有效性。 展开更多
关键词 分类数据 聚类算法 闭项集 频繁模式树
在线阅读 下载PDF
数据流上一种单遍扫描频繁模式树结构 被引量:1
17
作者 谭军 卜英勇 陈爱斌 《计算机工程与应用》 CSCD 2013年第2期152-154,共3页
针对频繁模式增长算法无法适应数据流的无限性和流动性的特点,提出一种新颖的FP-tree的变形结构——FPS-tree,只需单遍扫描便能获取当前窗口的全部数据库信息。为了在滑动窗口时有效地删除过期窗格和插入新窗格,提出一个新颖的概念——&... 针对频繁模式增长算法无法适应数据流的无限性和流动性的特点,提出一种新颖的FP-tree的变形结构——FPS-tree,只需单遍扫描便能获取当前窗口的全部数据库信息。为了在滑动窗口时有效地删除过期窗格和插入新窗格,提出一个新颖的概念——"尾结点",FPS-tree中每条路径上的窗格信息只保持在尾结点里。实验结果表明FPS-tree的压缩性能要优于其他单遍扫描的前缀树结构。 展开更多
关键词 数据流 频繁模式增长算法 单遍扫描模式树 尾结点
在线阅读 下载PDF
基于FP_Growth算法的关联规则挖掘研究及应用 被引量:7
18
作者 马瑞敏 吴海霞 《太原师范学院学报(自然科学版)》 2021年第1期19-22,共4页
关联规则的发现对于挖掘数据中的隐含信息非常重要,针对关联规则挖掘算法进行研究,分析了利用FP_Growth算法构建FP-tree和递归挖掘频繁项集的过程,并应用该算法对大学生兴趣爱好问卷调查结果进行分析,通过找出强关联规则,准确了解学生... 关联规则的发现对于挖掘数据中的隐含信息非常重要,针对关联规则挖掘算法进行研究,分析了利用FP_Growth算法构建FP-tree和递归挖掘频繁项集的过程,并应用该算法对大学生兴趣爱好问卷调查结果进行分析,通过找出强关联规则,准确了解学生的共同爱好,有助于更好地开展校园文化活动. 展开更多
关键词 关联规则 频繁项集 FP_GROWTH算法 FP-tree 条件模式基
在线阅读 下载PDF
基于频繁模式树的大数据关联规则自动挖掘算法 被引量:1
19
作者 王景兰 王振 《上海电机学院学报》 2023年第6期356-360,共5页
由于传统大数据挖掘算法效率较低,导致挖掘出的规则存在大量冗余,提出基于频繁模式树的大数据关联规则自动挖掘算法。通过扫描数据库生成频繁模式树,作为算法的实现依据,并在频繁模式树上挖掘大数据频繁模式设计关联规则自动挖掘算法。... 由于传统大数据挖掘算法效率较低,导致挖掘出的规则存在大量冗余,提出基于频繁模式树的大数据关联规则自动挖掘算法。通过扫描数据库生成频繁模式树,作为算法的实现依据,并在频繁模式树上挖掘大数据频繁模式设计关联规则自动挖掘算法。结果表明:本文算法仅需5.24s就能有效挖掘出高校学生缴费数据中的关联规则,验证了该算法运行效率较高。 展开更多
关键词 数据挖掘 频繁模式树 关联规则 自动挖掘算法
在线阅读 下载PDF
基于逆向FP-树的频繁模式挖掘算法 被引量:8
20
作者 赵艳铎 宋斌恒 《计算机应用》 CSCD 北大核心 2005年第6期1385-1387,共3页
提出了一种称为逆向FP 合并的算法,该算法逆向构造FP 树并通过在其中寻找频繁扩展项集与合并子树来挖掘频繁模式。新算法在时空效率方面均优于FP 增长算法,其中时间效率提高了2倍以上。此外,新算法还具有良好的伸缩性。
关键词 数据挖掘 频繁模式 逆向FP-树 逆向FP-合并算法 频繁扩展项
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部