期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
1
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
Segment differential aggregation representation and supervised compensation learning of ConvNets for human action recognition
2
作者 REN ZiLiang ZHANG QieShi +3 位作者 CHENG Qin XU ZhenYu YUAN Shuai LUO DeLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary feat... With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary features from different modalities for action recognition.In this work,a novel multimodal supervised learning framework based on convolution neural networks(Conv Nets)is proposed to facilitate extracting the compensation features from different modalities for human action recognition.Built on information aggregation mechanism and deep Conv Nets,our recognition framework represents spatial-temporal information from the base modalities by a designed frame difference aggregation spatial-temporal module(FDA-STM),that the networks bridges information from skeleton data through a multimodal supervised compensation block(SCB)to supervise the extraction of compensation features.We evaluate the proposed recognition framework on three human action datasets,including NTU RGB+D 60,NTU RGB+D 120,and PKU-MMD.The results demonstrate that our model with FDA-STM and SCB achieves the state-of-the-art recognition performance on three benchmark datasets. 展开更多
关键词 action recognition segment frame difference aggregation supervised compensation learning ConvNets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部