The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play...The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.展开更多
With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary feat...With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary features from different modalities for action recognition.In this work,a novel multimodal supervised learning framework based on convolution neural networks(Conv Nets)is proposed to facilitate extracting the compensation features from different modalities for human action recognition.Built on information aggregation mechanism and deep Conv Nets,our recognition framework represents spatial-temporal information from the base modalities by a designed frame difference aggregation spatial-temporal module(FDA-STM),that the networks bridges information from skeleton data through a multimodal supervised compensation block(SCB)to supervise the extraction of compensation features.We evaluate the proposed recognition framework on three human action datasets,including NTU RGB+D 60,NTU RGB+D 120,and PKU-MMD.The results demonstrate that our model with FDA-STM and SCB achieves the state-of-the-art recognition performance on three benchmark datasets.展开更多
基金funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(grant number 22KJD440001)Changzhou Science&Technology Program(grant number CJ20220232).
文摘The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.
基金This work was supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2022A1515140119 and 2023A1515011307)the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(Grant No.20220001068001)+1 种基金Dongguan Science and Technology Special Commissioner Project(Grant No.20221800500362)the National Natural Science Foundation of China(Grant Nos.62376261,61972090,and U21A20487).
文摘With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary features from different modalities for action recognition.In this work,a novel multimodal supervised learning framework based on convolution neural networks(Conv Nets)is proposed to facilitate extracting the compensation features from different modalities for human action recognition.Built on information aggregation mechanism and deep Conv Nets,our recognition framework represents spatial-temporal information from the base modalities by a designed frame difference aggregation spatial-temporal module(FDA-STM),that the networks bridges information from skeleton data through a multimodal supervised compensation block(SCB)to supervise the extraction of compensation features.We evaluate the proposed recognition framework on three human action datasets,including NTU RGB+D 60,NTU RGB+D 120,and PKU-MMD.The results demonstrate that our model with FDA-STM and SCB achieves the state-of-the-art recognition performance on three benchmark datasets.