The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is...Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is neatly displayed in rows of shops,attracting consumers from across the country.展开更多
We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic st...We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.展开更多
With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive ...With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive release of vehicle exhaust seriously damages the natural environment,and the environmental crisis is becoming increasingly serious.This article follows the principles of improving fuel efficiency,reducing emissions,andenhancing vehicle performance.Using NX 12.0 software,a three-dimensional model of a certain type of dump truck frame is constructed based on actual parameters.ANSYS Workbench is used to simplify the geometric model,mesh division,and material definition,and a finite element model is constructed.Obtain the structural performance and natural vibration characteristics of the original chassis under four typical working conditions:bending,torsion,lifting,and unloading,through static analysis and modal analysis.On this basis,the dimensions of the components that bear less load on the original frame were optimized,and the topology of the second crossbeam and rear end corner of the subframe that bear less load on the original frame was optimized to obtain a new frame.The new frame of the dump truck underwent secondary static analysis and modal analysis,and it was found that the weight of the new frame decreased by 41.03 kg,successfully reducing the weight of the frame by 4.38%,improving the vehicle's handling and stability,and extending its service life.展开更多
Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,genera...Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,generally,each application requires a specific class of frames and is closely related to quantum measurement.It is worth noting that a maximal set of complex equiangular vectors is closely related to a symmetric informationally complete measurement.Hence,our goal in this work is to propose a series of separability criteria assigned to a finite tight frame and some well-known inequalities in different quantum systems,respectively.In addition,some tighter criteria to detect entanglement for many-body quantum states are presented in arbitrary dimensions.Finally,the effectiveness of the proposed entanglement detection criteria is illustrated through some detailed examples.展开更多
With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering ty...With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.展开更多
Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AR...Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AREMA(2023),Manual for Railway Engineering-Volume 2-Structures,with systematic comparisons of techno-economic differences between the Chinese and American codes through recalculation verification and equivalent-precision design methods.The findings reveal:Recalculation using the Chinese code for identical structural dimensions and reinforcement layouts demonstrates that AREMA code exhibits greater conservatism in both strength requirements and crack control;Under equivalent precision design principles,the Chinese code solution reduces reinforcement by 4.128 t tons and a 19.5%reduction in reinforcement at critical sections compared to the AREMA code,indicating slightly reduced economic efficiency of the AREMA code.This research provides quantitative references for standardized design and specification integration in cross-border railway engineering projects.展开更多
High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped ...High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped steel support frame(VCDFS)with viscous dampers to reduce seismic responses of both tall and low-rise electrical equipment.The VCDFS contains a trapezoidal damper layer to generate rocking motions,enabling the diagonal viscous dampers to dissipate seismic inputs.A theoretical model of post equipment with VCDFS is established,and an optimal design procedure is proposed.The analysis shows that the remaining static stiffness ratio λ_(k) is the key parameter that determines the effectiveness of the VCDFS.The VCDFS reduces the average displacement and stress response of a post insulator by 39.4%and 44.6%,respectively,together with a significant decrease in the dynamic amplification factor.Therefore,it is recommended to use the VCDFS instead of the conventional latticed-steel frame in earthquake zones.展开更多
Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engin...Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engineering Technology and Jiangsu Provincial Enterprise Technology Center.The company has obtained SGS-certified ISO9001 quality management system,a globally recognized standard.Niupai specializes in the R&D and manufacturing of cam shedding device,dobby shedding device,jacquard shedding device and heald frames for water-jet looms,air-jet looms as well as rapier looms.展开更多
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force...To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is n...This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation...Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation.These theories can be formulated both in the Jordan and Einstein frame,which are related by a Weyl transformation with a field transformation,known together as a frame transformation.These theories formulated in the above two frames are often considered to be equivalent from the point of view of classical theory.However,this is no longer true from the quantum field theoretical perspective.In the present article,we show that the Ward identities derived in the above two frames are not connected through the frame transformation.This shows that the quantum field theories formulated in these two frames are not equivalent to each other.Moreover,this inequivalence is also shown by comparing the effective actions derived in these two frames.展开更多
We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate syste...We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.展开更多
A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o...A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.展开更多
H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,...H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.展开更多
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method...Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.展开更多
Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attract...Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis.However,unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs.This review focuses on MOF-based materials used in electrocatalysis,based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications,and also looks at some new electrocatalytic materials and their future development prospects.展开更多
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
文摘Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is neatly displayed in rows of shops,attracting consumers from across the country.
基金supported by the National Key R&D Program of China,Grant No.2020YFA0712700the National Natural Science Foundation of China‘Mathematical Basic Theory of Quantum Computing’special project,Grant No.12341103。
文摘We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.
文摘With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive release of vehicle exhaust seriously damages the natural environment,and the environmental crisis is becoming increasingly serious.This article follows the principles of improving fuel efficiency,reducing emissions,andenhancing vehicle performance.Using NX 12.0 software,a three-dimensional model of a certain type of dump truck frame is constructed based on actual parameters.ANSYS Workbench is used to simplify the geometric model,mesh division,and material definition,and a finite element model is constructed.Obtain the structural performance and natural vibration characteristics of the original chassis under four typical working conditions:bending,torsion,lifting,and unloading,through static analysis and modal analysis.On this basis,the dimensions of the components that bear less load on the original frame were optimized,and the topology of the second crossbeam and rear end corner of the subframe that bear less load on the original frame was optimized to obtain a new frame.The new frame of the dump truck underwent secondary static analysis and modal analysis,and it was found that the weight of the new frame decreased by 41.03 kg,successfully reducing the weight of the frame by 4.38%,improving the vehicle's handling and stability,and extending its service life.
基金supported by the Natural Science Foundation of Sichuan Province(Grant No.25QNJJ4066)。
文摘Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,generally,each application requires a specific class of frames and is closely related to quantum measurement.It is worth noting that a maximal set of complex equiangular vectors is closely related to a symmetric informationally complete measurement.Hence,our goal in this work is to propose a series of separability criteria assigned to a finite tight frame and some well-known inequalities in different quantum systems,respectively.In addition,some tighter criteria to detect entanglement for many-body quantum states are presented in arbitrary dimensions.Finally,the effectiveness of the proposed entanglement detection criteria is illustrated through some detailed examples.
文摘With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.
文摘Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AREMA(2023),Manual for Railway Engineering-Volume 2-Structures,with systematic comparisons of techno-economic differences between the Chinese and American codes through recalculation verification and equivalent-precision design methods.The findings reveal:Recalculation using the Chinese code for identical structural dimensions and reinforcement layouts demonstrates that AREMA code exhibits greater conservatism in both strength requirements and crack control;Under equivalent precision design principles,the Chinese code solution reduces reinforcement by 4.128 t tons and a 19.5%reduction in reinforcement at critical sections compared to the AREMA code,indicating slightly reduced economic efficiency of the AREMA code.This research provides quantitative references for standardized design and specification integration in cross-border railway engineering projects.
基金Guangdong Basic and Applied Basic Research Foundation under Grant Nos.2022A1515110561 and 2023A1515010072Natural Science Foundation of China under Grant Nos.52308488 and 52378499。
文摘High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped steel support frame(VCDFS)with viscous dampers to reduce seismic responses of both tall and low-rise electrical equipment.The VCDFS contains a trapezoidal damper layer to generate rocking motions,enabling the diagonal viscous dampers to dissipate seismic inputs.A theoretical model of post equipment with VCDFS is established,and an optimal design procedure is proposed.The analysis shows that the remaining static stiffness ratio λ_(k) is the key parameter that determines the effectiveness of the VCDFS.The VCDFS reduces the average displacement and stress response of a post insulator by 39.4%and 44.6%,respectively,together with a significant decrease in the dynamic amplification factor.Therefore,it is recommended to use the VCDFS instead of the conventional latticed-steel frame in earthquake zones.
文摘Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engineering Technology and Jiangsu Provincial Enterprise Technology Center.The company has obtained SGS-certified ISO9001 quality management system,a globally recognized standard.Niupai specializes in the R&D and manufacturing of cam shedding device,dobby shedding device,jacquard shedding device and heald frames for water-jet looms,air-jet looms as well as rapier looms.
基金The National Natural Science Foundation of China(No.52078427).
文摘To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.
文摘This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
文摘Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation.These theories can be formulated both in the Jordan and Einstein frame,which are related by a Weyl transformation with a field transformation,known together as a frame transformation.These theories formulated in the above two frames are often considered to be equivalent from the point of view of classical theory.However,this is no longer true from the quantum field theoretical perspective.In the present article,we show that the Ward identities derived in the above two frames are not connected through the frame transformation.This shows that the quantum field theories formulated in these two frames are not equivalent to each other.Moreover,this inequivalence is also shown by comparing the effective actions derived in these two frames.
基金Industrial Support and Program Project of Universities in Gansu Province(No.2022CYZC-30)National Natural Science Foundation of China(Nos.42430108,41930101)China Scholarship Council(No.202306180085).
文摘We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.
基金National Key Research and Development Program of China under Grant No.2022YFC3803004Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX20_0031Fundamental Research Funds for the Central Universities under Grant No.3205002108D。
文摘A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.
文摘H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.
基金financial support from Teesside University to support the Ph.D.programme of the first author.
文摘Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management.
基金financially supported by the National Natural Science Foundation of China(Nos.21677010,51808037)the National Key R&D Program of China(No.2021YFB3500702)the Special Fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04)。
文摘Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis.However,unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs.This review focuses on MOF-based materials used in electrocatalysis,based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications,and also looks at some new electrocatalytic materials and their future development prospects.