To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameter...To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.展开更多
The damage evolution in steel reinforced high strength concrete(SRHSC) frame columns was studied based on the test results of cyclic reversed loading experiment of 12 frame column specimens with various axial compress...The damage evolution in steel reinforced high strength concrete(SRHSC) frame columns was studied based on the test results of cyclic reversed loading experiment of 12 frame column specimens with various axial compression rations,stirrups ratios,steel rations and loading histories.The variation law of the ultimate bearing capacity,ultimate deformation and ultimate hysteretic energy dissipation of specimens under different loading protocols was obtained.The seismic damage characteristics,as well as strength and stiffness degradation,of SRHSC frame columns were analyzed.Based on the analysis of the nonlinear double parameters combination of deformation and energy,a damage model that can well reflect the mechanical characteristics of members subjected to a horizontal earthquake action was established by considering the effects of the number of the loading cycles on the ultimate resistance capacity(ultimate deformation and ultimate energy dissipation capacity) of members,and the loading history on damage,etc.According to the test results,the related parameters of the damage model were proposed.Finally,the damage model proposed was validated by the test results.Results indicated that the proposed damage model is theoretically more reasonable and can accurately describe the seismic damage evolution of the SRHSC frame columns.The results also can be used as a new theoretic reference for the establishment of damage-based earthquake-resistant design method of SRHSC members.展开更多
In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer ...In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer framework curve and the corresponding resilience model were obtained from the hysteretic curve.And the stiffness and strength degeneration were also investigated.The results indicated that the stiffness degeneration is not obvious,thus the frame with specially shaped columns has high earthquake-resistant behavior.The resilience model calculated from the test can provide reference for design and nonlinear finite element analysis.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulati...The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.展开更多
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake...A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.展开更多
Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. ...Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of urtreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.展开更多
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Inf...Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
基金Funded by Natural Science Foundation of Henan Province Office of Education (No. 2009A560007)Doctor Foundation of Henan Polytechnic University (No. B2008-7)
文摘To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90815005, 50978218)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106120110003)the Educational Office of Shan'xi Province in China (Grant No.2010JK633)
文摘The damage evolution in steel reinforced high strength concrete(SRHSC) frame columns was studied based on the test results of cyclic reversed loading experiment of 12 frame column specimens with various axial compression rations,stirrups ratios,steel rations and loading histories.The variation law of the ultimate bearing capacity,ultimate deformation and ultimate hysteretic energy dissipation of specimens under different loading protocols was obtained.The seismic damage characteristics,as well as strength and stiffness degradation,of SRHSC frame columns were analyzed.Based on the analysis of the nonlinear double parameters combination of deformation and energy,a damage model that can well reflect the mechanical characteristics of members subjected to a horizontal earthquake action was established by considering the effects of the number of the loading cycles on the ultimate resistance capacity(ultimate deformation and ultimate energy dissipation capacity) of members,and the loading history on damage,etc.According to the test results,the related parameters of the damage model were proposed.Finally,the damage model proposed was validated by the test results.Results indicated that the proposed damage model is theoretically more reasonable and can accurately describe the seismic damage evolution of the SRHSC frame columns.The results also can be used as a new theoretic reference for the establishment of damage-based earthquake-resistant design method of SRHSC members.
基金Supported by Fund of Specially Shaped Column Code of Ministry of Construction of China.
文摘In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer framework curve and the corresponding resilience model were obtained from the hysteretic curve.And the stiffness and strength degeneration were also investigated.The results indicated that the stiffness degeneration is not obvious,thus the frame with specially shaped columns has high earthquake-resistant behavior.The resilience model calculated from the test can provide reference for design and nonlinear finite element analysis.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2016A05 and 2016A06National Natural Science Foundation of China under Grant No.51478441
文摘The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.
基金National Natural Science Foundation of China under Grant Nos.51478117,51508295,51478231the Shandong Province Taishan Scholar Advanced Disciplinary Talent Group Project
文摘A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.
文摘Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of urtreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.
基金the partial financial support from Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Foundation of China(Grant No.51078274,51021140006)
文摘Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.