期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method 被引量:10
1
作者 Ni Xiaoming Chen Wenxue +1 位作者 Li Zheyuan Gao Xiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期693-699,共7页
There are millimeter, micron and nanometer scales of pores and fractures in coal to describe different scales of coal pores and fissures communicating path and to quantitatively characterize their permeability. Such i... There are millimeter, micron and nanometer scales of pores and fractures in coal to describe different scales of coal pores and fissures communicating path and to quantitatively characterize their permeability. Such information provides an important basis for studying coalbed methane output mechanism. The pores and fissures in a large number of coal samples were observed and counted by scanning electron microscopy and optical microscopy. The probability distribution models of pore-fissure network were then established. Different scales of pore-fissures 2D network models were reconstructed by Monte Carlo method. The 2D seepage models were obtained through assignment zero method and using Matlab software. The effect of permeability on different scale pore-fractures network was obtained by two-dimensional seepage equation. Predicted permeability is compared with the measured ones. The results showed that the dominant order of different scale pore-fractures connected path from high to low is millimeter-sized fractures, seepage pores and micron-size fractures. The contribution of coal reservoir permeability from large to small is millimeter-size fractures, micron-size fractures and seepage pores. Different parameters in different scale pore-fractures are of different influence permeability.Reconstruction of different scale pore-fractures network can clearly display the connectivity of porefractures, which can provide a basis for selecting migration path and studying gas flow pattern. 展开更多
关键词 fractures network Different scales RECONSTRUCTION PERMEABILITY
在线阅读 下载PDF
Effects of discrete fracture networks on simulating hydraulic fracturing,induced seismicity and trending transition of relative modulus in coal seams 被引量:1
2
作者 Xin Zhang Guangyao Si +3 位作者 Qingsheng Bai Joung Oh Biao Jiao Wu Cai 《International Journal of Coal Science & Technology》 2025年第1期263-278,共16页
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd... Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data. 展开更多
关键词 Discrete fracture network Hydraulic fracturing Discrete element method Induced seismicity Relative modulus
在线阅读 下载PDF
Experimental and numerical studies on propagation behavior between hydraulic fractures and pre-existing fractures under prepulse combined hydraulic fracturing 被引量:1
3
作者 Chao Wei Liyuan Yu +2 位作者 Shentao Geng Zichen Yuan Yubo Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2879-2892,共14页
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be... Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures. 展开更多
关键词 Prepulse combined hydraulic fracturing Prepulse loading parameters Fracture networks Fracture propagation Pre-existing fracture
在线阅读 下载PDF
Distinct element modeling of hydraulic fracture propagation with discrete fracture network at Gonghe enhanced geothermal system site, northwest China
4
作者 Botong Du Fengshou Zhang Chongyuan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3435-3448,共14页
Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overa... Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites. 展开更多
关键词 Enhanced geothermal system 3DEC Discrete fracture network Hydraulic fracture simulation Fracture network propagation
在线阅读 下载PDF
Characteristics of hydraulic fracture network in the tight conglomerate reservoir based on a hydraulic fracturing test site
5
作者 QIN Jianhua XIAN Chenggang +6 位作者 ZHANG Jing LIANG Tianbo WANG Wenzhong LI Siyuan ZHANG Jinning ZHANG Yang ZHOU Fujian 《Petroleum Exploration and Development》 2025年第1期245-257,共13页
In order to identify the development characteristics of fracture network in tight conglomerate reservoir of Mahu after hydraulic fracturing,a hydraulic fracturing test site was set up in the second and third members o... In order to identify the development characteristics of fracture network in tight conglomerate reservoir of Mahu after hydraulic fracturing,a hydraulic fracturing test site was set up in the second and third members of Triassic Baikouquan Formation(T1b2 and T1b3)in Ma-131 well area,which learned from the successful experience of hydraulic fracturing test sites in North America(HFTS-1).Twelve horizontal wells and a high-angle coring well MaJ02 were drilled.The orientation,connection,propagation law and major controlling factors of hydraulic fractures were analyzed by comparing results of CT scans,imaging logs,direct observation of cores from Well MaJ02,and combined with tracer monitoring data.Results indicate that:(1)Two types of fractures have developed by hydraulic fracturing,i.e.tensile fractures and shear fractures.Tensile fractures are approximately parallel to the direction of the maximum horizontal principal stress,and propagate less than 50 m from perforation clusters.Shear fractures are distributed among tensile fractures and mainly in the strike-slip mode due to the induced stress field among tensile fractures,and some of them are in conjugated pairs.Overall,tensile fractures alternate with shear fractures,with shear fractures dominated and activated after tensile ones.(2)Tracer monitoring results indicate that communication between wells was prevalent in the early stage of production,and the static pressure in the fracture gradually decreased and the connectivity between wells reduced as production progressed.(3)Density of hydraulic fractures is mainly affected by the lithology and fracturing parameters,which is smaller in the mudstone than the conglomerate.Larger fracturing scale and smaller cluster spacing lead to a higher fracture density,which are important directions to improve the well productivity. 展开更多
关键词 tight conglomerate tight oil hydraulic fracturing test site high-angle coring tensile fractures shear fractures fracture network features
在线阅读 下载PDF
Mining-induced fracture network reconstruction and anisotropic mining-enhanced permeability evaluation using fractal theory
6
作者 Zeyu Zhu Jing Xie +5 位作者 Yingxu Zhang Yuze Du Li Ren Ting Ai Bengao Yang Mingzhong Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2256-2275,共20页
In the concurrent extraction of coal and gas,the quantitative assessment of evolving characteristics in mining-induced fracture networks and mining-enhanced permeability within coal seams serves as the cornerstone for... In the concurrent extraction of coal and gas,the quantitative assessment of evolving characteristics in mining-induced fracture networks and mining-enhanced permeability within coal seams serves as the cornerstone for effective gas extraction.However,representing mining-induced fracture networks from a three-dimensional(3D)sight and developing a comprehensive model to evaluate the anisotropic mining-enhanced permeability characteristics still pose significant challenges.In this investigation,a field experiment was undertaken to systematically monitor the evolution of borehole fractures in the coal mass ahead of the mining face at the Pingdingshan Coal Mining Group in China.Using the testing data of borehole fracture,the mining-induced fracture network at varying distances from the mining face was reconstructed through a statistical reconstruction method.Additionally,utilizing fractal theory,a model for the permeability enhancement rate(PER)induced by mining was established.This model was employed to quantitatively depict the anisotropic evolution patterns of PER as the mining face advanced.The research conclusions are as follows:(1)The progression of the mining-induced fracture network can be classified into the stage of rapid growth,the stage of stable growth,and the stage of weak impact;(2)The PER of mining-induced fracture network exhibited a typical progression that can be characterized with slow growth,rapid growth and significant decline;(3)The anisotropic mining-enhanced permeability of the reconstructed mining-induced fracture networks were significant.The peak PER in the vertical direction of the coal seam is 6.86 times and 4446.38 times greater than the direction perpendicular to the vertical thickness and the direction parallel to the advancement of the mining face,respectively.This investigatione provides a viable approach and methodology for quantitatively assessing the anisotropic PER of fracture networks induced during mining,in the concurrent exploitation of coal and gas. 展开更多
关键词 Fracture networks reconstruction FRACTAL ANISOTROPY Permeability enhancement rate(PER) Evaluation model
在线阅读 下载PDF
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
7
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 Thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM Dynamic mechanical response
在线阅读 下载PDF
Segmenting identified fracture families from 3D fracture networks in Montney rock using a deep learning-based method
8
作者 Mei Li Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6120-6129,共10页
Fractures are critical to subsurface activities such as oil and gas extraction,geothermal energy production,and carbon storage.Hydraulic fracturing,a technique that enhances fluid production,creates complex fracture n... Fractures are critical to subsurface activities such as oil and gas extraction,geothermal energy production,and carbon storage.Hydraulic fracturing,a technique that enhances fluid production,creates complex fracture networks within rock formations containing natural discontinuities.Accurately distinguishing between hydraulically induced fractures and pre-existing discontinuities is essential for understanding hydraulic fracture mechanisms.However,this remains challenging due to the interconnected nature of fractures in three-dimensional(3D)space.Manual segmentation,while adaptive,is both labor-intensive and subjective,making it impractical for large-scale 3D datasets.This study introduces a deep learning-based progressive cross-sectional segmentation method to automate the classification of 3D fracture volumes.The proposed method was applied to a 3D hydraulic fracture network in a Montney cube sample,successfully segmenting natural fractures,parted bedding planes,and hydraulic fractures with minimal user intervention.The automated approach achieves a 99.6%reduction in manual image processing workload while maintaining high segmentation accuracy,with test accuracy exceeding 98%and F1-score over 84%.This approach generalizes well to Brazilian disc samples with different fracture patterns,achieving consistently high accuracy in distinguishing between bedding and non-bedding fractures.This automated fracture segmentation method offers an effective tool for enhanced quantitative characterization of fracture networks,which would contribute to a deeper understanding of hydraulic fracturing processes. 展开更多
关键词 True-triaxial hydraulic fracturing Shale fracture network Serial section image Machine learning Image segmentation
在线阅读 下载PDF
A conditioned discrete fracture network for stability analysis of rock wedge in an open pit mine
9
作者 Yilin Zhao Kamran Esmaeili Mohammad Rezaei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6496-6516,共21页
The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of ... The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency. 展开更多
关键词 Conditional simulation Discrete fracture network(DFN) Sequential Gaussian simulation(SGS) Open pit slope Rock wedge stability
在线阅读 下载PDF
Wellbore breakouts in heavily fractured rocks:A coupled discrete fracture network-distinct element method analysis
10
作者 Yongcun Feng Yaoran Wei +4 位作者 Zhenlai Tan Tianyu Yang Xiaorong Li Jincai Zhang Jingen Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1685-1699,共15页
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a... Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks. 展开更多
关键词 Wellbore breakout Discrete fracture network(DFN) Distinct element method(DEM) Heavily fractured rocks
在线阅读 下载PDF
Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures 被引量:5
11
作者 Yueli Feng Yuetian Liu +1 位作者 Jian Chen Xiaolong Mao 《Fluid Dynamics & Materials Processing》 EI 2022年第2期395-415,共21页
Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used t... Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir.In this study,dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle,spacing,and relevant elastic parameters on the principal value of the permeability tensor.The fracture apertures at different angles show different change rates,which influence the relative permeability for different sets of fractures.Furthermore,under the same pressure condition,the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates.This phenomenon leads to a variation in the water seepage direction in typical water-injection applications,thereby hindering the expected exploitation effect of the original well network.Overall,the research findings in this paper can be used as guidance to improve the effectiveness of water injection exploitation in the oil field industry. 展开更多
关键词 Pressure sensitive fracture network physical simulation seepage laws
在线阅读 下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
12
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY Hydraulic conductivity
在线阅读 下载PDF
Simulating the impact of complex fracture networks on the heat extraction performance of hot-dry rock masses 被引量:2
13
作者 Jiao Peng Peng Zhao +3 位作者 Haiyan Zhu Shijie Chen Hongyu Xian Tao Ni 《Natural Gas Industry B》 2024年第2期196-212,共17页
The complex network of fractures formed by randomly distributed natural fractures in hot-dry rocks(HDRs)complicates the heat transfer regularity of injected fluid.On the basis of the fracture network,exploring the cha... The complex network of fractures formed by randomly distributed natural fractures in hot-dry rocks(HDRs)complicates the heat transfer regularity of injected fluid.On the basis of the fracture network,exploring the characteristics of the fluid flow and heat transfer as influenced by different parameters helps enable efficient resource extraction and effectively promotes the construction of diversified energy utilization structures.Accordingly,accounting for the effect of the thermal shock on the evolution of the permeability of the rock matrix,a thermo-hydromechanical(THM)coupling model is developed to analyze the influences of fracture network characteristics on the heat extraction performance of HDRs.In addition,a large-scale injection and production physical simulation experiment is performed using a newly developed,in-house,large-scale true triaxial experimental system.The corresponding numerical model is established and validated.The good agreement between the numerical and experimental results verifies the reliability and accuracy of the proposed THM model.Subsequently,a two-dimensional model is established under complex fracture network conditions,taking,as a research object,the natural fracture characteristics of HDR in the Qinghai Gonghe Basin in combination with the regional geological information.The effects of different parameters,including the production well location,rock matrix permeability,injection rate,initial fracture width,and number of fractures,on the production temperature and heat extraction performance are systematically analyzed.The results indicate that an increase in the number of fractures,the distance between the injection well and the production well,or the width of the initial fractures leads to an improved heat extraction performance.The number of fractures increased from 11 horizontal fractures and 22 high-angle fractures to 35 horizontal fractures and 70 high-angle fractures,with a 20%increase in heat extraction rate.While the influence of the rock matrix permeability is not highly significant,it cannot be ignored.It is crucial to select an injection rate that is neither too low nor too high,taking into consideration economic factors. 展开更多
关键词 Geothermal resources Fracture network Production temperature Heat extraction Influence factor Multi-field coupling
暂未订购
Proppant transport in rough fracture networks using supercritical CO_(2)
14
作者 Yong Zheng Meng-Meng Zhou +6 位作者 Ergun Kuru Bin Wang Jun Ni Bing Yang Ke Hu Hai Huang Hai-Zhu Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1852-1864,共13页
Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough... Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough fracture networks is still a relatively new area of research and the associated transport mechanisms are still unclear.In this study,representative parameters of rough fracture surfaces formed by supercritical CO_(2) fracturing were used to generate a rough fracture network model based on a spectral synthesis method.Computational fluid dynamics(CFD)coupled with the discrete element method(DEM)was used to study proppant transport in this rough fracture network.To reveal the turning transport mechanism of proppants into branching fractures at the intersections of rough fracture networks,a comparison was made with the behavior within smooth fracture networks,and the effect of key pumping parameters on the proppant placement in a secondary fracture was analyzed.The results show that the transport behavior of proppant in rough fracture networks is very different from that of the one in the smooth fracture networks.The turning transport mechanisms of proppant into secondary fractures in rough fracture networks are gravity-driven sliding,high velocity fluid suspension,and fracture structure induction.Under the same injection conditions,supercritical CO_(2)with high flow Reynolds number still has a weaker ability to transport proppant into secondary fractures than water.Thickening of the supercritical CO_(2)needs to be increased beyond a certain value to have a significant effect on proppant carrying,and under the temperature and pressure conditions of this paper,it needs to be increased more than 20 times(about 0.94 m Pa s).Increasing the injection velocity and decreasing the proppant concentration facilitates the entry of proppant into the branching fractures,which in turn results in a larger stimulated reservoir volume.The results help to understand the proppant transport and placement process in rough fracture networks formed by reservoir stimulation,and provide a theoretical reference for the optimization of proppant pumping parameters in hydraulic fracturing. 展开更多
关键词 Reservoir stimulation CCUS Rough fracture network Supercritical CO_(2) Proppanttransport
原文传递
Graph theoretical analysis of limestone fracture network damage patterns based on uniaxial compression test
15
作者 Mingyang Wang Congcong Wang +2 位作者 Enzhi Wang Xiaoli Liu Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3485-3510,共26页
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m... The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks. 展开更多
关键词 MOTIF Fracture network Topological property Damage resistance LIMESTONE
在线阅读 下载PDF
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
16
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir Complex fracture network Hydrocarbon gas huff-n-puff Parameter optimization Numerical simulation
原文传递
Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells
17
作者 Jianchao Shi Yanan Zhang +2 位作者 Wantao Liu Yuliang Su Jian Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1147-1163,共17页
Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ... Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased. 展开更多
关键词 Type III tight oil reservoirs refracturing methods horizontal wells fracture network study fracture network evolution
在线阅读 下载PDF
Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir
18
作者 Zhao Jinzhou Li Yongming +2 位作者 Wang Song Jiang Youshi Zhang Liehui 《Natural Gas Industry B》 2014年第1期89-95,共7页
When hydraulic fractures intersect with natural fractures,the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors.Based on th... When hydraulic fractures intersect with natural fractures,the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors.Based on the fracture mechanics,the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure.On this basis,a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters,including rock mechanics,in-situ stress distribution,fracture properties,and frac treatment parameters.The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients,and solving the geometrical parameters prior to the iteration fitting flow distribution.With the initiation and propagation criterion as the bases for the propagation of branch fractures,this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation.The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development.If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion,the branch fractures will propagate further with minor curvature radius,thus enlarging the reservoir stimulation area.The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density,validating the accuracy of this model. 展开更多
关键词 Shale gas Hydraulic fracturing Initiation and propagation criterion Propagating angle Propagating pressure Fracture network Complex fracture model
在线阅读 下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
19
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm Fracture flow Water-sealing effect
在线阅读 下载PDF
A semianalytical well-testing model of fracture-network horizontal wells in unconventional reservoirs with multiple discretely natural fractures
20
作者 Chen Zhiming Liao Xinwei Yu Wei 《Natural Gas Industry B》 2020年第6期567-582,共16页
Microseismic data shows that some unconventional reservoirs comprise well-developed natural fractures and complex hydraulic fracture networks.It is neither practical nor advantageous to simulate a huge number of natur... Microseismic data shows that some unconventional reservoirs comprise well-developed natural fractures and complex hydraulic fracture networks.It is neither practical nor advantageous to simulate a huge number of natural and hydraulic fractures with numerical models.Given that the conventional dual-porosity models are not applicable to the highly discrete natural fractures,the paper develops a semianalytical well testing model for horizontal wells with hydraulic fracture networks and randomly-distributed discretely natural fractures.The proposed model has the capability to analyze the pressure behaviors by considering complex fracture networks and isolated natural fractures rapidly and efficiently.The model includes diffusivity equations in three domains:(1)matrix,(2)discretely natural fractures,and(3)hydraulic fracture networks.The pressure transient solution of these diffusivity equations is obtained by using Laplace transforms and super-position principle.We verify the presented model by performing a case study with a numerical simulator for complex natural fractures.It is found that there are some interestingflow behaviors for fracture-network horizontal well with discretely natural fractures like bilinearflow,“V-shape”caused byfluid supply,pseudo boundary-dominatedflow,impact of natural fractures,etc.The pseudo boundary-dominatedflow provides us the information about how large the area covered by hydraulic fracture networks.The impact of natural fracture shows the pa-rameters of natural fractures.This work provides a good understanding of transient pressure behaviors in unconventional reservoirs and guidelines for the producer optimizefield development and well economics. 展开更多
关键词 Unconventional reservoirs Well testing model Fractured horizontal wells Fracture networks Discretely natural fractures
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部