Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac...Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
Stromal vascular fraction(SVF)is a complex mixture derived from adipose tissue,consisting of a variety of cells.Due to its potential for tissue repair,immunomod-ulation,and support of angiogenesis,SVF represents a pro...Stromal vascular fraction(SVF)is a complex mixture derived from adipose tissue,consisting of a variety of cells.Due to its potential for tissue repair,immunomod-ulation,and support of angiogenesis,SVF represents a promising frontier in regenerative medicine and offers potential therapy for a range of disease condi-tions.In this article,we delve into the mechanisms through which SVF exerts its effects and explore its potential applications in treating both male and female reproductive disorders,including erectile dysfunction,testicular injury,stress urinary incontinence and intrauterine adhesion.展开更多
Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline a...Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline and bulkrock chemistry of multi-phase Wangxianling granitoids,South China.Compositional variations suggest the coarse-grained muscovite granite is produced from fractional crystallization of the two-mica granite whereas the fine-grained muscovite granite represents a distinct magma pulse.Progressive fractionation of quartz,feldspar and biotite leads to elevated boron and aluminum content in melt which promoted muscovite and tourmaline to crystallize,which promotes two-mica granite evolving towards tourmaline-bearing muscovite granite.Fluid-melt-crystal interaction occurred at the magmatichydrothermal transitional stage and resulted in the textural and chemical zonings of tourmaline and muscovite in finegrained muscovite granite.The rims of both tourmaline and muscovite are characterized by the enrichment of fluid mobile elements such as Li,Mn,Cs and Zn and heavierδ^(11)B values of the tourmaline rims(-15.0‰to-13.6‰)compared to cores(-15.7‰to-14.3‰).Meanwhile,significant M-type REE tetrad effects(TE_(1,3)=1.07-1.18)and low K/Rb ratios(48-52)also correspond to fluid-melt-crystal interaction.This study shows zoned muscovite and tourmaline can be excellent tracers of fractional crystallization and late-stage fluid-melt-crystal interaction in highly evolved magmatic systems.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x...In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.展开更多
For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Und...In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Under some assumptions on V(x)and f,using Nehari–Pohozaev identity and the arguments of Brezis–Nirenberg,the monotonic trick and global compactness lemma,we prove the existence of a nontrivial least energy solution.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge i...Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller.展开更多
In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat eq...In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.展开更多
Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition d...Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition degree can easily be adjusted simultaneously.This paper introduces a new type of pliable FR codes,called absolute balanced pliable FR(ABPFR)codes,in which the access balancing in DSS is considered.Additionally,the equivalence between pliable FR codes and resolvable transversal packings in combinatorial design theory is presented.Then constructions of pliable FR codes and ABPFR codes based on resolvable transversal packings are presented.展开更多
In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the frac...In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian.By utilizing non-uniform grids,it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest.Overall,our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.展开更多
Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Nume...Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.展开更多
This paper develops an Ito-type fractional pathwise integration theory for fractional Brownian motion with Hurst parameters H∈(1/3,1/2],using the Lyons'rough path framework.This approach is designed to fill gaps ...This paper develops an Ito-type fractional pathwise integration theory for fractional Brownian motion with Hurst parameters H∈(1/3,1/2],using the Lyons'rough path framework.This approach is designed to fill gaps in conventional stochastic calculus models that fail to account for temporal persistence prevalent in dynamic systems such as those found in economics,finance,and engineering.The pathwise-defined method not only meets the zero expectation criterion but also addresses the challenges of integrating non-semimartingale processes,which traditional Ito calculus cannot handle.We apply this theory to fractional Black–Scholes models and high-dimensional fractional Ornstein–Uhlenbeck processes,illustrating the advantages of this approach.Additionally,the paper discusses the generalization of It?integrals to rough differential equations(RDE)driven by f BM,emphasizing the necessity of integrand-specific adaptations in the It?rough path lift for stochastic modeling.展开更多
In this paper,we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups G=(R^(n),o),namely{(-△_(G))^(s)u=f(x,u)+g(x,u)inΩ;u∈H_(0)^(s)(Ω)...In this paper,we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups G=(R^(n),o),namely{(-△_(G))^(s)u=f(x,u)+g(x,u)inΩ;u∈H_(0)^(s)(Ω),where s∈(0,1),Ω■G is a bounded open domain,(-△_(G))^(s)is the fractional sub-Laplacian,H_(0)^(s)(Ω)denotes the fractional Sobolev space,f(x,u)∈C(Ω×R),g(x,u)is a Carath′eodory function on Ω×R.Using perturbation methods and Morse index estimates in conjunction with fractional Dirichlet eigenvalue estimates,we establish the existence of multiple solutions to the problem.展开更多
Fractional differential equations(FDEs)provide a powerful tool for modeling systems with memory and non-local effects,but understanding their underlying structure remains a significant challenge.While numerous numeric...Fractional differential equations(FDEs)provide a powerful tool for modeling systems with memory and non-local effects,but understanding their underlying structure remains a significant challenge.While numerous numerical and semi-analytical methods exist to find solutions,new approaches are needed to analyze the intrinsic properties of the FDEs themselves.This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives.The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form,represented as the sum of a closed-form,integer-order component G(y)and a residual fractional power seriesΨ(x).This transformed FDE is subsequently reduced to a first-order ordinary differential equation(ODE).The primary novelty of the proposed methodology lies in treating the structure of the integer-order component G(y)not as fixed,but as a parameterizable polynomial whose coefficients can be determined via global optimization.Using particle swarm optimization,the framework identifies an optimal ODE architecture by minimizing a dual objective that balances solution accuracy against a high-fidelity reference and the magnitude of the truncated residual series.The effectiveness of the approach is demonstrated on both a linear FDE and a nonlinear fractional Riccati equation.Results demonstrate that the framework successfully identifies an optimal,low-degree polynomial ODE architecture that is not necessarily identical to the forcing function of the original FDE.This work provides a new tool for analyzing the underlying structure of FDEs and gaining deeper insights into the interplay between local and non-local dynamics in fractional systems.展开更多
Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not y...Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not yet fully understood.In this study,the V(V)reduction mechanisms with concomitant V isotope fractionation by the Gram-positive bacterium Bacillus subtilis(B.subtilis)and the Gramnegative bacterium Thauera humireducens(T.humireducens)were investigated.Both strains could effectively reduce V(V),removing(90.5%±1.6%)and(93.0%±1.8%)of V(V)respectively from an initial concentration of 50 mg L^(-1) during a 10-day incubation period.V(V)was bioreduced to insoluble vanadium(IV),which was distributed both inside and outside the cells.Electron transfer via cytochrome C,nicotinamide adenine dinucleotide,and glutathione played critical roles in V(V)reduction.Metabolomic analysis showed that differentially enriched metabolites(quinone,biotin,and riboflavin)mediated electron transfer in both strains.The aqueous V in the remaining solution became isotopically heavier as V(V)bioreduction proceeded.The obtained V isotope composition dynamics followed a Rayleigh fractionation model,and the isotope enrichment factor(e)was(–0.54‰±0.04‰)for B.subtilis and(–0.32‰±0.03‰)for T.humireducens,with an insignificant difference.This study provides molecular insights into electron transfer for V(V)bioreduction and reveals V isotope fractionation during this bioprocess,which is helpful for understanding V biogeochemistry and developing novel strategies for V remediation.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
文摘Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
文摘Stromal vascular fraction(SVF)is a complex mixture derived from adipose tissue,consisting of a variety of cells.Due to its potential for tissue repair,immunomod-ulation,and support of angiogenesis,SVF represents a promising frontier in regenerative medicine and offers potential therapy for a range of disease condi-tions.In this article,we delve into the mechanisms through which SVF exerts its effects and explore its potential applications in treating both male and female reproductive disorders,including erectile dysfunction,testicular injury,stress urinary incontinence and intrauterine adhesion.
基金funded by the National Natural Science Foundation of China(Grant Nos.42072089 and 41530206)。
文摘Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline and bulkrock chemistry of multi-phase Wangxianling granitoids,South China.Compositional variations suggest the coarse-grained muscovite granite is produced from fractional crystallization of the two-mica granite whereas the fine-grained muscovite granite represents a distinct magma pulse.Progressive fractionation of quartz,feldspar and biotite leads to elevated boron and aluminum content in melt which promoted muscovite and tourmaline to crystallize,which promotes two-mica granite evolving towards tourmaline-bearing muscovite granite.Fluid-melt-crystal interaction occurred at the magmatichydrothermal transitional stage and resulted in the textural and chemical zonings of tourmaline and muscovite in finegrained muscovite granite.The rims of both tourmaline and muscovite are characterized by the enrichment of fluid mobile elements such as Li,Mn,Cs and Zn and heavierδ^(11)B values of the tourmaline rims(-15.0‰to-13.6‰)compared to cores(-15.7‰to-14.3‰).Meanwhile,significant M-type REE tetrad effects(TE_(1,3)=1.07-1.18)and low K/Rb ratios(48-52)also correspond to fluid-melt-crystal interaction.This study shows zoned muscovite and tourmaline can be excellent tracers of fractional crystallization and late-stage fluid-melt-crystal interaction in highly evolved magmatic systems.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金Partially supported by NSFC(No.11701304)the K.C.Wong Education Foundation。
文摘In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金Supported by NSFC(No.12561023)partly by the Provincial Natural Science Foundation of Jiangxi,China(Nos.20232BAB201001,20202BAB211004)。
文摘In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Under some assumptions on V(x)and f,using Nehari–Pohozaev identity and the arguments of Brezis–Nirenberg,the monotonic trick and global compactness lemma,we prove the existence of a nontrivial least energy solution.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
文摘Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller.
基金Partially supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX22-2211,KYCX22-2205)。
文摘In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.
基金Supported in part by the National Key R&D Program of China(No.2020YFA0712300)NSFC(No.61872353)。
文摘Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition degree can easily be adjusted simultaneously.This paper introduces a new type of pliable FR codes,called absolute balanced pliable FR(ABPFR)codes,in which the access balancing in DSS is considered.Additionally,the equivalence between pliable FR codes and resolvable transversal packings in combinatorial design theory is presented.Then constructions of pliable FR codes and ABPFR codes based on resolvable transversal packings are presented.
基金supported by the Spanish MINECO through Juan de la Cierva fellow-ship FJC2021-046953-I.
文摘In this study,we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian.By utilizing non-uniform grids,it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest.Overall,our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.
基金supported by Ajman University Internal Research Grant No.(DRGS Ref.2024-IRGHBS-3).
文摘Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.
基金Supported by Shanghai Artificial Intelligence Laboratory。
文摘This paper develops an Ito-type fractional pathwise integration theory for fractional Brownian motion with Hurst parameters H∈(1/3,1/2],using the Lyons'rough path framework.This approach is designed to fill gaps in conventional stochastic calculus models that fail to account for temporal persistence prevalent in dynamic systems such as those found in economics,finance,and engineering.The pathwise-defined method not only meets the zero expectation criterion but also addresses the challenges of integrating non-semimartingale processes,which traditional Ito calculus cannot handle.We apply this theory to fractional Black–Scholes models and high-dimensional fractional Ornstein–Uhlenbeck processes,illustrating the advantages of this approach.Additionally,the paper discusses the generalization of It?integrals to rough differential equations(RDE)driven by f BM,emphasizing the necessity of integrand-specific adaptations in the It?rough path lift for stochastic modeling.
基金supported by the NSFC(12131017,12221001)the National Key R&D Program of China(2022YFA1005602)。
文摘In this paper,we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups G=(R^(n),o),namely{(-△_(G))^(s)u=f(x,u)+g(x,u)inΩ;u∈H_(0)^(s)(Ω),where s∈(0,1),Ω■G is a bounded open domain,(-△_(G))^(s)is the fractional sub-Laplacian,H_(0)^(s)(Ω)denotes the fractional Sobolev space,f(x,u)∈C(Ω×R),g(x,u)is a Carath′eodory function on Ω×R.Using perturbation methods and Morse index estimates in conjunction with fractional Dirichlet eigenvalue estimates,we establish the existence of multiple solutions to the problem.
基金Research Council of Lithuania(LMTLT),agreement No.S-PD-24-120Research Council of Lithuania(LMTLT),agreement No.S-PD-24-120funded by the Research Council of Lithuania.
文摘Fractional differential equations(FDEs)provide a powerful tool for modeling systems with memory and non-local effects,but understanding their underlying structure remains a significant challenge.While numerous numerical and semi-analytical methods exist to find solutions,new approaches are needed to analyze the intrinsic properties of the FDEs themselves.This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives.The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form,represented as the sum of a closed-form,integer-order component G(y)and a residual fractional power seriesΨ(x).This transformed FDE is subsequently reduced to a first-order ordinary differential equation(ODE).The primary novelty of the proposed methodology lies in treating the structure of the integer-order component G(y)not as fixed,but as a parameterizable polynomial whose coefficients can be determined via global optimization.Using particle swarm optimization,the framework identifies an optimal ODE architecture by minimizing a dual objective that balances solution accuracy against a high-fidelity reference and the magnitude of the truncated residual series.The effectiveness of the approach is demonstrated on both a linear FDE and a nonlinear fractional Riccati equation.Results demonstrate that the framework successfully identifies an optimal,low-degree polynomial ODE architecture that is not necessarily identical to the forcing function of the original FDE.This work provides a new tool for analyzing the underlying structure of FDEs and gaining deeper insights into the interplay between local and non-local dynamics in fractional systems.
基金supported by the National Natural Science Foundation of China(U21A2033)the Fundamental Research Funds for the Central Universities(2652022103).
文摘Microbial vanadate(V(V))reduction is a key process for environmental geochemistry and detoxification of vanadium(V).However,the electron transfer pathways and V isotope fractionation involved in this process are not yet fully understood.In this study,the V(V)reduction mechanisms with concomitant V isotope fractionation by the Gram-positive bacterium Bacillus subtilis(B.subtilis)and the Gramnegative bacterium Thauera humireducens(T.humireducens)were investigated.Both strains could effectively reduce V(V),removing(90.5%±1.6%)and(93.0%±1.8%)of V(V)respectively from an initial concentration of 50 mg L^(-1) during a 10-day incubation period.V(V)was bioreduced to insoluble vanadium(IV),which was distributed both inside and outside the cells.Electron transfer via cytochrome C,nicotinamide adenine dinucleotide,and glutathione played critical roles in V(V)reduction.Metabolomic analysis showed that differentially enriched metabolites(quinone,biotin,and riboflavin)mediated electron transfer in both strains.The aqueous V in the remaining solution became isotopically heavier as V(V)bioreduction proceeded.The obtained V isotope composition dynamics followed a Rayleigh fractionation model,and the isotope enrichment factor(e)was(–0.54‰±0.04‰)for B.subtilis and(–0.32‰±0.03‰)for T.humireducens,with an insignificant difference.This study provides molecular insights into electron transfer for V(V)bioreduction and reveals V isotope fractionation during this bioprocess,which is helpful for understanding V biogeochemistry and developing novel strategies for V remediation.