期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Mittag-Leffler stability of numerical solutions to linear homogeneous multi-term time fractional parabolic equations
1
作者 DONG Wen WANG Dongling 《纯粹数学与应用数学》 2025年第2期315-332,共18页
The long-term Mittag-Leffler stability of solutions to multi-term timefractional diffusion equations with constant coefficients was rigorously established,which demonstrated that the algebraic decay rate of the soluti... The long-term Mittag-Leffler stability of solutions to multi-term timefractional diffusion equations with constant coefficients was rigorously established,which demonstrated that the algebraic decay rate of the solution,characterized by||u_(n)||L^(2)(Ω)=O(t^(−αs)) as t→∞,is determined by the minimum order α_(s) of the time-fractional derivatives.Building on this foundational result,this article pursues two primary objectives.First,we introduce a strongly A-stable fractional linear multistep method and derive the numerical stability region for the governing equation.Second,we rigorously prove the long-term decay rate of the numerical solution through a detailed singularity analysis of its generating function.Notably,the numerical decay rate||u_(n)||L^(2)(Ω)=O(t_(n)^(−α_(s)) as t_(n)→∞aligns precisely with the continuous case.Theoretical findings are further validated through comprehensive numerical simulations,underscoring the robustness of our proposed method. 展开更多
关键词 Mittag-Leffler stability algebraic decay fractional linear multistep method
在线阅读 下载PDF
Global convergent algorithm for the bilevel linear fractional-linear programming based on modified convex simplex method 被引量:2
2
作者 Guangmin Wang Bing Jiang +1 位作者 Kejun Zhu Zhongping Wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期239-243,共5页
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ... A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm. 展开更多
关键词 bilevel linear fractional-linear programming convex simplex method dual problem.
在线阅读 下载PDF
Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations 被引量:1
3
作者 Yu bo Yang Fanhai Zeng 《Communications on Applied Mathematics and Computation》 2019年第4期621-637,共17页
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e... In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation. 展开更多
关键词 Time-fractional subdififusion equation Convolution QUADRATURE fractional linear MULTISTEP methods Discrete fractional GRONWALL inequality Unconditional stability
在线阅读 下载PDF
On Multi-step Greedy Kaczmarz Method for Solving Large Sparse Consistent Linear Systems
4
作者 Long-Ze Tan Ming-Yu Deng Xue-Ping Guo 《Communications on Applied Mathematics and Computation》 2025年第4期1580-1597,共18页
Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved ... Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved when the linear system is consistent.Numerical experiments demonstrate that the proposed method is effective and more efficient than several existing classical Kaczmarz methods. 展开更多
关键词 System of linear equations Kaczmarz method Greedy randomized Kaczmarz(GRK)method multi-step greedy Kaczmarz method Convergence
在线阅读 下载PDF
A Fourth-Order Convergent Iterative Method by Means of Thiele's Continued Fraction for Root-Finding Problem
5
作者 Shengfeng LI 《Journal of Mathematical Research with Applications》 CSCD 2019年第1期10-22,共13页
In this paper, we propose a new single-step iterative method for solving non-linear equations in a variable. This iterative method is derived by using the approximation formula of truncated Thiele's continued frac... In this paper, we propose a new single-step iterative method for solving non-linear equations in a variable. This iterative method is derived by using the approximation formula of truncated Thiele's continued fraction. Analysis of convergence shows that the order of convergence of the introduced iterative method for a simple root is four. To illustrate the efficiency and performance of the proposed method we give some numerical examples. 展开更多
关键词 NON-linear equation Thiele’s continued fraction Viscovatov algorithm iterative method order of convergence
原文传递
Two-Level Linear Relaxation Method for Generalized Linear Fractional Programming 被引量:2
6
作者 Hong-Wei Jiao You-Lin Shang 《Journal of the Operations Research Society of China》 EI CSCD 2023年第3期569-594,共26页
This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by util... This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 Generalized linear fractional programming Global optimization Two-level linear relaxation method BRANCH-AND-BOUND
原文传递
Optimized Hybrid Block Adams Method for Solving First Order Ordinary Differential Equations
7
作者 Hira Soomro Nooraini Zainuddin +1 位作者 Hanita Daud Joshua Sunday 《Computers, Materials & Continua》 SCIE EI 2022年第8期2947-2961,共15页
Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical res... Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence. 展开更多
关键词 Initial value problem(IVPs) linear multi-step method BLOCK interpolation HYBRID Adams-Moulton method
在线阅读 下载PDF
THE STEP-TRANSITION OPERATORS FOR MULTI-STEP METHODS OF ODE'S 被引量:5
8
作者 Feng K.(ICMSEC, Chinese Academy of Sciences) 《Journal of Computational Mathematics》 SCIE CSCD 1998年第3期193-202,共10页
In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m s... In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m step scheme defined on M while the old definitions are given out by defining a corresponding one step method on M × M ×…× M = Mm with a set of new variables. The new definition gives out a steptransition operator g: M → M. Under our new definition, the Leap-frog method is symplectic only for linear Hamiltonian systems. The transition operator g will be constructed via continued fractions and rational approximations. 展开更多
关键词 multi-step methods Explike and loglike function fractional and rational approximation Simplecticity of LMM Nonexistence of SLMM.
原文传递
NON-EXISTENCE OF CONJUGATE-SYMPLECTIC MULTI-STEP METHODS OF ODD ORDER 被引量:1
9
作者 Yandong Jiao Guidong Dai +1 位作者 Quandong Feng Yifa Tang 《Journal of Computational Mathematics》 SCIE CSCD 2007年第6期690-696,共7页
We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalize... We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator. 展开更多
关键词 linear multi-step method Generalized linear multi-step method Step-transition operator Infinitesimally symplectic Conjugate-symplectic.
原文传递
EXPANSIONS OF STEP-TRANSITION OPERATORS OF MULTI-STEP METHODS AND ORDER BARRIERS FOR DAHLQUIST PAIRS 被引量:1
10
作者 Quan-dong Feng Yi-fa Tang 《Journal of Computational Mathematics》 SCIE EI CSCD 2006年第1期45-58,共14页
Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained... Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively. 展开更多
关键词 linear multi-step method Step-Transition Operator B-SERIES Dahlquist(Conjugate) pair SYMPLECTICITY
原文传递
Riesz空间分数阶扩散方程的快速预处理方法
11
作者 黄小青 张建华 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第6期702-709,共8页
空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的... 空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的系数矩阵可分解为单位矩阵与一个低秩矩阵和小范数矩阵的和.数值实验结果证实了τ矩阵块α循环预处理广义最小残差法求解非对称all-at-once线性方程组的有效性. 展开更多
关键词 Riesz空间分数阶扩散方程 all-at-once线性方程组 CRANK-NICOLSON格式 四阶有限中心差分法 τ预处理 广义最小残差法
在线阅读 下载PDF
分数阶系统状态空间描述的数值算法 被引量:4
12
作者 王振滨 曹广益 朱新坚 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第1期101-105,109,共6页
利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法... 利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法不但公式简单易编程,而且具有计算精度高、运算速度快等优点.给出一个粘弹性动态系统的仿真实例,验证了其有效性. 展开更多
关键词 分数微积分 分数阶系统 分数阶线性多步长方法 状态空间描述
在线阅读 下载PDF
π型感应电能传输系统的鲁棒稳定性分析 被引量:6
13
作者 李砚玲 孙跃 戴欣 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期50-55,共6页
为分析π型感应电能传输系统的鲁棒稳定性,首先采用基于频域分解的方法建立对象的广义状态空间平均(GSSA)模型,再考虑系统中的频率不确定性,通过线性分式变换分离对象的摄动和标称部分,将不确定模型进一步转化为含摄动反馈的线性动力学... 为分析π型感应电能传输系统的鲁棒稳定性,首先采用基于频域分解的方法建立对象的广义状态空间平均(GSSA)模型,再考虑系统中的频率不确定性,通过线性分式变换分离对象的摄动和标称部分,将不确定模型进一步转化为含摄动反馈的线性动力学系统.最后,采用基于结构奇异值的μ方法分析了频率摄动对系统稳定性的影响以及系统保持稳定所容许的最大摄动,并利用仿真结果验证了μ理论分析的准确性. 展开更多
关键词 稳定性 感应电能传输系统 广义状态空间平均法 线性分式变换 μ方法
在线阅读 下载PDF
分数阶常微分方程初值问题的高阶近似 被引量:8
14
作者 林然 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第1期21-25,共5页
对于整数阶常微分方程的数值解法,如欧拉法、线性多步法等都已有较完善的理论.而对于分数阶微分方程数值方法和误差估计的理论研究相对较少.在这篇文章中,我们考虑最简单的分数阶常微分方程,引进了分数阶的线性多步法,导出了分数阶常微... 对于整数阶常微分方程的数值解法,如欧拉法、线性多步法等都已有较完善的理论.而对于分数阶微分方程数值方法和误差估计的理论研究相对较少.在这篇文章中,我们考虑最简单的分数阶常微分方程,引进了分数阶的线性多步法,导出了分数阶常微分方程初值问题的高阶近似,证明了其方法的相容性和收敛性,并且给出了稳定性分析.最后给出了一些数值例子,证实了这个分数阶线性多步法是解分数阶常微分方程的一个有效方法. 展开更多
关键词 分数阶常微分方程 初值问题 高阶近似 线性多步法 相容性 收敛性 稳定性
在线阅读 下载PDF
基于微分几何法的非线性分数阶悬架主动控制 被引量:7
15
作者 常宇健 田沃沃 +2 位作者 金格 陈恩利 李韶华 《振动与冲击》 EI CSCD 北大核心 2021年第4期270-276,共7页
现有主动悬架的研究主要以线性弹簧和线性阻尼组成的悬架系统为研究背景,但油气悬架、空气悬架和磁流变悬架等实际悬架不仅具有非线性特性,而且同时具有黏弹性材料的特点。因此含有非线性刚度和分数阶阻尼的悬架模型能更准确地描述悬架... 现有主动悬架的研究主要以线性弹簧和线性阻尼组成的悬架系统为研究背景,但油气悬架、空气悬架和磁流变悬架等实际悬架不仅具有非线性特性,而且同时具有黏弹性材料的特点。因此含有非线性刚度和分数阶阻尼的悬架模型能更准确地描述悬架的动力学性能。针对含有三次方非线性刚度及分数阶阻尼的二自由度1/4汽车悬架模型进行研究,利用Oustaloup滤波器算法对悬架系统中的分数阶微分进行近似计算,分别采用PID控制器和基于微分几何理论反馈线性化的LQR控制器对该悬架系统进行主动控制。结果表明,基于PID控制器的主动悬架和基于反馈线性化LQR控制器的主动悬架都能有效提高汽车悬架的舒适性和稳定性,其中反馈线性化LQR主动控制效果明显优于PID控制。 展开更多
关键词 非线性 分数阶阻尼 Oustaloup滤波器算法 微分几何法 LQR控制
在线阅读 下载PDF
线性分式规划的灵敏度分析及其应用 被引量:3
16
作者 薛声家 韩小花 +1 位作者 凌文昌 龙瑞锋 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2005年第3期307-313,共7页
 基于解非线性规划的凸单纯形法,对线性分式规划进行灵敏度分析.求出使最优解或最优基保持最优的模型参数可变范围,并讨论了多个参数同时发生变化的情况.最后给出应用例子.
关键词 线性分式规划 极点 灵敏度分析 既约梯度 凸单纯形法
在线阅读 下载PDF
分数阶L系统中的混沌及其控制 被引量:7
17
作者 武相军 王兴元 《计算机科学》 CSCD 北大核心 2007年第12期204-206,210,共4页
研究了分数阶L系统的混沌动力学行为、数值腄庵っ鞣质譒系统存在混沌,并且得出分数阶L系统能产生混沌吸引子的最低阶数为2.5阶。利用线性反馈控制法研究了分数阶L混沌系统的混沌控制问题,得出了受控分数阶L混沌系统的混沌... 研究了分数阶L系统的混沌动力学行为、数值腄庵っ鞣质譒系统存在混沌,并且得出分数阶L系统能产生混沌吸引子的最低阶数为2.5阶。利用线性反馈控制法研究了分数阶L混沌系统的混沌控制问题,得出了受控分数阶L混沌系统的混沌轨道达到不稳定平衡点时的条件,数值模拟进一步验证了该方法的有效性。 展开更多
关键词 分数阶Lü系统 线性反馈控制法 混沌控制
在线阅读 下载PDF
共形阵列LFM信号多参数估计的传播算子算法 被引量:2
18
作者 张树银 郭英 +1 位作者 齐子森 霍文俊 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第4期181-187,共7页
给出了一种共形阵列完成多分量线性调频信号多参数估计的方法.算法首先根据分数阶傅里叶变换(FRFT)的匹配聚焦能力对阵列接收数据进行预处理,通过多个特定阶次的FRFT将多分量线性调频信号在变换域进行分离,从而得到了简化的快拍数据模型... 给出了一种共形阵列完成多分量线性调频信号多参数估计的方法.算法首先根据分数阶傅里叶变换(FRFT)的匹配聚焦能力对阵列接收数据进行预处理,通过多个特定阶次的FRFT将多分量线性调频信号在变换域进行分离,从而得到了简化的快拍数据模型,避免了复杂的参数配对过程,然后在传播算子算法的基础上实现了波达方向估计和极化参数估计.由于不需要参数配对和高维数据协方差矩阵的特征值分解等操作,算法复杂度和运算量均得到了很好控制.仿真实验表明,所给算法在性能上接近旋转不变子空间(ESPRIT)算法,而运算量却远远低于ESPRIT算法. 展开更多
关键词 共形阵列天线 分数阶傅里叶变换 传播算子算法 极化参数估计 线性调频信号
在线阅读 下载PDF
Fokker—Planck方程 被引量:3
19
作者 邵耀椿 封国林 李俊来 《昆明理工大学学报(自然科学版)》 CAS 1996年第S1期18-21,共4页
介绍了近几年朗之万方程和Fokker-Planck方程在各学科中的应用,特别指出了在生物遗传学、气象学中的最近研究动态;扼要概括了Fokker-Planck方程的研究方法,强调了矩阵连分法的应用前景.
关键词 FOKKER-PLANCK方程 矩阵连分法 朗之万方程 非线性
在线阅读 下载PDF
分数阶Rikitake系统中的混沌及其控制 被引量:5
20
作者 张济仕 史蕊 《河南大学学报(自然科学版)》 CAS 北大核心 2009年第1期81-86,共6页
研究分数阶Rikitake系统的混沌动力学行为.数值模拟证明分数阶Rikitake系统存在混沌,并且得出分数阶Rikitake系统能产生混沌吸引子的最低阶数为2.94阶.利用线性反馈控制法研究了分数阶Rikitake混沌系统的混沌控制问题,得出受控分数阶Rik... 研究分数阶Rikitake系统的混沌动力学行为.数值模拟证明分数阶Rikitake系统存在混沌,并且得出分数阶Rikitake系统能产生混沌吸引子的最低阶数为2.94阶.利用线性反馈控制法研究了分数阶Rikitake混沌系统的混沌控制问题,得出受控分数阶Rikitake混沌系统的混沌轨道达到不稳定平衡点时的条件,数值模拟进一步验证了该方法的有效性. 展开更多
关键词 分数阶系统 线性反馈控制法 混沌控制
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部