The long-term Mittag-Leffler stability of solutions to multi-term timefractional diffusion equations with constant coefficients was rigorously established,which demonstrated that the algebraic decay rate of the soluti...The long-term Mittag-Leffler stability of solutions to multi-term timefractional diffusion equations with constant coefficients was rigorously established,which demonstrated that the algebraic decay rate of the solution,characterized by||u_(n)||L^(2)(Ω)=O(t^(−αs)) as t→∞,is determined by the minimum order α_(s) of the time-fractional derivatives.Building on this foundational result,this article pursues two primary objectives.First,we introduce a strongly A-stable fractional linear multistep method and derive the numerical stability region for the governing equation.Second,we rigorously prove the long-term decay rate of the numerical solution through a detailed singularity analysis of its generating function.Notably,the numerical decay rate||u_(n)||L^(2)(Ω)=O(t_(n)^(−α_(s)) as t_(n)→∞aligns precisely with the continuous case.Theoretical findings are further validated through comprehensive numerical simulations,underscoring the robustness of our proposed method.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e...In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.展开更多
Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved ...Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved when the linear system is consistent.Numerical experiments demonstrate that the proposed method is effective and more efficient than several existing classical Kaczmarz methods.展开更多
In this paper, we propose a new single-step iterative method for solving non-linear equations in a variable. This iterative method is derived by using the approximation formula of truncated Thiele's continued frac...In this paper, we propose a new single-step iterative method for solving non-linear equations in a variable. This iterative method is derived by using the approximation formula of truncated Thiele's continued fraction. Analysis of convergence shows that the order of convergence of the introduced iterative method for a simple root is four. To illustrate the efficiency and performance of the proposed method we give some numerical examples.展开更多
This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by util...This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.展开更多
Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical res...Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.展开更多
In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m s...In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m step scheme defined on M while the old definitions are given out by defining a corresponding one step method on M × M ×…× M = Mm with a set of new variables. The new definition gives out a steptransition operator g: M → M. Under our new definition, the Leap-frog method is symplectic only for linear Hamiltonian systems. The transition operator g will be constructed via continued fractions and rational approximations.展开更多
We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalize...We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.展开更多
Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained...Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.展开更多
文摘The long-term Mittag-Leffler stability of solutions to multi-term timefractional diffusion equations with constant coefficients was rigorously established,which demonstrated that the algebraic decay rate of the solution,characterized by||u_(n)||L^(2)(Ω)=O(t^(−αs)) as t→∞,is determined by the minimum order α_(s) of the time-fractional derivatives.Building on this foundational result,this article pursues two primary objectives.First,we introduce a strongly A-stable fractional linear multistep method and derive the numerical stability region for the governing equation.Second,we rigorously prove the long-term decay rate of the numerical solution through a detailed singularity analysis of its generating function.Notably,the numerical decay rate||u_(n)||L^(2)(Ω)=O(t_(n)^(−α_(s)) as t_(n)→∞aligns precisely with the continuous case.Theoretical findings are further validated through comprehensive numerical simulations,underscoring the robustness of our proposed method.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
文摘In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.
基金supported by the National Natural Science Foundation of China(No.12071149)the Science and Technology Commission of Shanghai Municipality of China(No.22DZ2229014)the National Key R&D Program of China(No.2022YFA1004403).
文摘Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved when the linear system is consistent.Numerical experiments demonstrate that the proposed method is effective and more efficient than several existing classical Kaczmarz methods.
基金Supported by the National Natural Science Foundation of China(Grant No.11571071)the Natural Science Key Foundation of Education Department of Anhui Province(Grant No.KJ2013A183)+1 种基金the Project of Leading Talent Introduction and Cultivation in Colleges and Universities of Education Department of Anhui Province(Grant No.gxfxZD2016270)the Incubation Project of the National Scientific Research Foundation of Bengbu University(Grant No.2018GJPY04)
文摘In this paper, we propose a new single-step iterative method for solving non-linear equations in a variable. This iterative method is derived by using the approximation formula of truncated Thiele's continued fraction. Analysis of convergence shows that the order of convergence of the introduced iterative method for a simple root is four. To illustrate the efficiency and performance of the proposed method we give some numerical examples.
基金the National Natural Science Foundation of China(Nos.11871196,12071133 and 12071112)the China Postdoctoral Science Foundation(No.2017M622340)+1 种基金the Key Scientific and Technological Research Projects of Henan Province(Nos.202102210147 and 192102210114)the Science and Technology Climbing Program of Henan Institute of Science and Technology(No.2018JY01).
文摘This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.
基金This research was funded by Fundamental Research Grant Scheme(FRGS)under the Ministry of Higher Education Malaysia,grant number with project ref:FRGS/1/2019/STG06/UTP/03/2.
文摘Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.
文摘In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m step scheme defined on M while the old definitions are given out by defining a corresponding one step method on M × M ×…× M = Mm with a set of new variables. The new definition gives out a steptransition operator g: M → M. Under our new definition, the Leap-frog method is symplectic only for linear Hamiltonian systems. The transition operator g will be constructed via continued fractions and rational approximations.
基金Acknowledgements. We would like to thank the editors for their valuable suggestions and corrections. This research is supported by the National Natural Science Foundation of China (Grant Nos. 10471145 and 10672143), and by Morningside Center of Mathematics, Chinese Academy of Sciences.
文摘We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.
基金This research is supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences "Supercomputing Environment Construction and Application" (INF105-SCE), and by a grant (No. 10471145) from National Natural Science Foundation of China.
文摘Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.