In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming year...Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.展开更多
This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening ...This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve.展开更多
The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understandi...The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understanding the extent of LDVs’impact on climate change and human well-being is crucial for informed decisionmaking and effective mitigation strategies.This study investigates the predictability of CO_(2)emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers,their CO_(2)emission levels,and key influencing factors.Specifically,sixMachine Learning(ML)algorithms,ranging fromsimple linearmodels to complex non-linear models,were applied under identical conditions to ensure a fair comparison and their performance metrics were calculated.The obtained results showed a significant influence of variables such as engine size on CO_(2)emissions.Although the six algorithms have provided accurate forecasts,the Linear Regression(LR)model was found to be sufficient,achieving a Mean Absolute Percentage Error(MAPE)below 0.90%and a Coefficient of Determination(R2)exceeding 99.7%.These findings may contribute to a deeper understanding of LDVs’role in CO_(2)emissions and offer actionable insights for reducing their environmental impact.In fact,vehicle manufacturers can leverage these insights to target key emission-related factors,while policymakers and stakeholders in logistics and transportation can use the models to estimate the CO_(2)emissions of new vehicles before their market deployment or to project future emissions from current and expected LDV fleets.展开更多
BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate ...BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate risk prediction is essential for optimized clinical management.AIM To develop and validate a logistic regression-based risk prediction model for aortic adverse remodeling following TEVAR in patients with TBAD.METHODS This retrospective observational cohort study analyzed 140 TBAD patients undergoing TEVAR at a tertiary center(2019–2024).Based on European guidelines,patients were categorized into adverse remodeling(aortic growth rate>2.9 mm/year,n=45)and favorable remodeling groups(n=95).Comprehensive variables(clinical/imaging/surgical)were analyzed using multivariable logistic regression to develop a predictive model.Model performance was assessed via receiver operating characteristic-area under the curve(AUC)and Hosmer-Lemeshow tests.RESULTS Multivariable analysis identified several strong independent predictors of negative aortic remodeling.Larger false lumen diameter at the primary entry tear[odds ratio(OR):1.561,95%CI:1.197–2.035;P=0.001]and patency of the false lumen(OR:5.639,95%CI:4.372-8.181;P=0.004)were significant risk factors.False lumen involvement extending to the thoracoabdominal aorta was identified as the strongest predictor,significantly increasing the risk of adverse remodeling(OR:11.751,95%CI:9.841-15.612;P=0.001).Conversely,false lumen involvement confined to the thoracic aorta demonstrated a significant protective effect(OR:0.925,95%CI:0.614–0.831;P=0.015).The prediction model exhibited excellent discrimination(AUC=0.968)and calibration(Hosmer-Lemeshow P=0.824).CONCLUSION This validated risk prediction model identifies aortic adverse remodeling with high accuracy using routinely available clinical parameters.False lumen involvement thoracoabdominal aorta is the strongest predictor(11.751-fold increased risk).The tool enables preoperative risk stratification to guide tailored TEVAR strategies and improve long-term outcomes.展开更多
[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observ...[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observed and recorded. Impulsive Logistic Model was used to simulate the development process of the disease, which was compared with actual incidence. [ Result] Artificial inoculation tests showed that impulsive Logistic Model could reflect time dynamic of C. zeae-maydi. Through derivation, exponential growth phase was from maize seedling emergence to eady July in each year, logistic phase was from early July to late August, terminal phase was from eady September to the end of maize growth stage. [ Conclusion] The derivation result from model was consistent with the development biological laws of C. zeae-maydi.展开更多
目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析...目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析,构建全身麻醉复苏延迟的预判模型并用列线图展示。利用随机森林算法筛选全身麻醉患者复苏延迟的影响因素并按重要性排序。采用受试者操作特征曲线(Receiver operating characteristic curve,ROC)下面积(Area of the under curve,AUC)检验模型的预测效果,采用校准曲线以及决策曲线综合评价模型的预测性能。结果1177例患者复苏延迟发生99例,发生率为8.41%。Logistic回归显示性别、ASA分级、年龄、手术时间、手术种类、输液量是全麻患者复苏延迟的独立危险因素。随机森林算法结果显示复苏延迟各变量的重要性排序为手术种类、年龄、手术时间、输液量、ASA分级、性别。Logistic回归模型的训练组AUC为0.87(95%CI 0.83~0.91),验证组为0.86(95%CI 0.81~0.91)。随机森林模型训练组AUC为0.85(95%CI 0.49~1.00),验证组AUC为0.76(95%CI 0.26~1.00)。提示模型具有良好的区分能力,预测能力较高,具有一定的临床价值。结论手术种类、年龄、手术时间、输液量、ASA分级、性别是全麻患者复苏延迟的独立危险因素,根据此构建预判模型的区分度与校准度较高,有助于预测全麻患者苏醒延迟的发生,可以为临床护理干预措施的制定与实施提供参考。展开更多
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence...Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.展开更多
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri...Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.展开更多
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
文摘Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.
基金Project(52074299)supported by the National Natural Science Foundation of ChinaProjects(2023JCCXSB02,BBJ2024083)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,project number MoE-IF-UJ-R2-22-20772-1.
文摘The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understanding the extent of LDVs’impact on climate change and human well-being is crucial for informed decisionmaking and effective mitigation strategies.This study investigates the predictability of CO_(2)emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers,their CO_(2)emission levels,and key influencing factors.Specifically,sixMachine Learning(ML)algorithms,ranging fromsimple linearmodels to complex non-linear models,were applied under identical conditions to ensure a fair comparison and their performance metrics were calculated.The obtained results showed a significant influence of variables such as engine size on CO_(2)emissions.Although the six algorithms have provided accurate forecasts,the Linear Regression(LR)model was found to be sufficient,achieving a Mean Absolute Percentage Error(MAPE)below 0.90%and a Coefficient of Determination(R2)exceeding 99.7%.These findings may contribute to a deeper understanding of LDVs’role in CO_(2)emissions and offer actionable insights for reducing their environmental impact.In fact,vehicle manufacturers can leverage these insights to target key emission-related factors,while policymakers and stakeholders in logistics and transportation can use the models to estimate the CO_(2)emissions of new vehicles before their market deployment or to project future emissions from current and expected LDV fleets.
基金Supported by Zhangjiajie"Xiao He(Young Talent)"Project,No.2024XHRC03Jishou University School-Level Research Project.
文摘BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate risk prediction is essential for optimized clinical management.AIM To develop and validate a logistic regression-based risk prediction model for aortic adverse remodeling following TEVAR in patients with TBAD.METHODS This retrospective observational cohort study analyzed 140 TBAD patients undergoing TEVAR at a tertiary center(2019–2024).Based on European guidelines,patients were categorized into adverse remodeling(aortic growth rate>2.9 mm/year,n=45)and favorable remodeling groups(n=95).Comprehensive variables(clinical/imaging/surgical)were analyzed using multivariable logistic regression to develop a predictive model.Model performance was assessed via receiver operating characteristic-area under the curve(AUC)and Hosmer-Lemeshow tests.RESULTS Multivariable analysis identified several strong independent predictors of negative aortic remodeling.Larger false lumen diameter at the primary entry tear[odds ratio(OR):1.561,95%CI:1.197–2.035;P=0.001]and patency of the false lumen(OR:5.639,95%CI:4.372-8.181;P=0.004)were significant risk factors.False lumen involvement extending to the thoracoabdominal aorta was identified as the strongest predictor,significantly increasing the risk of adverse remodeling(OR:11.751,95%CI:9.841-15.612;P=0.001).Conversely,false lumen involvement confined to the thoracic aorta demonstrated a significant protective effect(OR:0.925,95%CI:0.614–0.831;P=0.015).The prediction model exhibited excellent discrimination(AUC=0.968)and calibration(Hosmer-Lemeshow P=0.824).CONCLUSION This validated risk prediction model identifies aortic adverse remodeling with high accuracy using routinely available clinical parameters.False lumen involvement thoracoabdominal aorta is the strongest predictor(11.751-fold increased risk).The tool enables preoperative risk stratification to guide tailored TEVAR strategies and improve long-term outcomes.
基金Supported by Doctoral Fundation of Liaoning Province(20081064)Liaoning BaiQianWan Talents Program(2009921072)Ministry of Agriculture,National Research Subject(2004BA520A11)~~
文摘[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observed and recorded. Impulsive Logistic Model was used to simulate the development process of the disease, which was compared with actual incidence. [ Result] Artificial inoculation tests showed that impulsive Logistic Model could reflect time dynamic of C. zeae-maydi. Through derivation, exponential growth phase was from maize seedling emergence to eady July in each year, logistic phase was from early July to late August, terminal phase was from eady September to the end of maize growth stage. [ Conclusion] The derivation result from model was consistent with the development biological laws of C. zeae-maydi.
文摘目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析,构建全身麻醉复苏延迟的预判模型并用列线图展示。利用随机森林算法筛选全身麻醉患者复苏延迟的影响因素并按重要性排序。采用受试者操作特征曲线(Receiver operating characteristic curve,ROC)下面积(Area of the under curve,AUC)检验模型的预测效果,采用校准曲线以及决策曲线综合评价模型的预测性能。结果1177例患者复苏延迟发生99例,发生率为8.41%。Logistic回归显示性别、ASA分级、年龄、手术时间、手术种类、输液量是全麻患者复苏延迟的独立危险因素。随机森林算法结果显示复苏延迟各变量的重要性排序为手术种类、年龄、手术时间、输液量、ASA分级、性别。Logistic回归模型的训练组AUC为0.87(95%CI 0.83~0.91),验证组为0.86(95%CI 0.81~0.91)。随机森林模型训练组AUC为0.85(95%CI 0.49~1.00),验证组AUC为0.76(95%CI 0.26~1.00)。提示模型具有良好的区分能力,预测能力较高,具有一定的临床价值。结论手术种类、年龄、手术时间、输液量、ASA分级、性别是全麻患者复苏延迟的独立危险因素,根据此构建预判模型的区分度与校准度较高,有助于预测全麻患者苏醒延迟的发生,可以为临床护理干预措施的制定与实施提供参考。
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(2011BAK12B09)China Special Project of Basic Work of Science and Technology(2011FY110100-2)
文摘Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.
基金This paper was financially supported by NSC96-2628-E-366-004-MY2 and NSC96-2628-E-132-001-MY2
文摘Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.