Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut...Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.展开更多
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian sy...In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.展开更多
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer...The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model ...Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.展开更多
Both safety and stability are primary performance criteria for multi-unmanned aerial vehicle(multi-UAV)systems in many coordination tasks.Existing approaches often consider safety and stability separately.It is necess...Both safety and stability are primary performance criteria for multi-unmanned aerial vehicle(multi-UAV)systems in many coordination tasks.Existing approaches often consider safety and stability separately.It is necessary and urgent to develop a safety-stability control strategy to merge these two performance criteria.In this paper,a unified approach is developed to consider safety and stability for multi-UAV formation control.The stability criterion is represented by a Lyapunov function and safety criterion is represented by a barrier function and then a relaxed converse control Lyapunov-barrier theorem is obtained.With the help of a relaxed converse control Lyapunov-barrier function(RCCLBF),a distributed safety-stability formation control strategy is proposed for the multi-UAV system.By transforming the solution of RCCLBF to a Lyapunovlike stabilization problem,we show that the proposed formation control strategy can drive the UAVs staying within a specified safe set.Simulation results are provided to validate the proposed safety-stability formation control strategy.展开更多
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve...The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.展开更多
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env...A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.展开更多
This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonl...This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dram...The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis.Vinculin loss severely impaired osteocyte adhesion and dendrite formation.Deleting vinculin using the mouse 10-kb Dmp1-Cre transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine,but not in the skull,in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption.Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice.Vinculin knockdown increases,while vinculin overexpression decreases,sclerostin expression in osteocytes without impacting expression of Mef2c,a major transcriptional regulator of the Sost gene,which encodes sclerostin.Vinculin interacts with Mef2c and retains the latter in the cytoplasm.Thus,vinculin loss enhances Mef2c nuclear translocation and binding to the Sost enhancer ECR5 to promote sclerostin expression in osteocytes and reduces bone formation.Consistent with this notion,deleting Sost expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice.Finally,we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss.Thus,we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.展开更多
Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperativ...Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.展开更多
In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the ...In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the attitudes of the quadrotor UAVs.Separating the model into a translational subsystem and a rotational subsystem,an intermediary control input is introduced to track a desired velocity and extract desired orientations.Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs,the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping,by which the bounded control thrust and the desired orientation can be extracted.Thereafter,an adaptive control torque input is designed for the rotational subsystem to track the desired orientation.With the proposed control scheme,the desired velocity is tracked and a desired formation shape is built up.Global stability of the closed-loop system is proven via Lyapunov-based stability analysis.Numerical simulation results are presented to illustrate the effectiveness of the proposed control scheme.展开更多
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in...This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is...The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.展开更多
Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral dep...Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt;in the Middle Qilian,South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt;in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt,and in the Northeastern Jiangxi,Northwestern Jiangxi,and Southern Hunan regions in South China.Major ore-forming epochs include Indosinian(mostly 200-240 Ma,in particular in western China)and the Yanshanian(mostly 120-160 Ma,in particular in South China).In addition,Bayan Obo,Inner Mongolia,northeastern China,with a complex formation history,hosts the largest REE and Nb deposits in China.There are six major rare metal mineral deposit types in China:Highly fractionated granite;Pegmatite;Alkaline granite;Carbonatite and alkaline rock;Volcanic;and Hydrothermal types.Two further types,namely the Leptynite type and Breccia pipe type,have recently been discovered in China,and are represented by the Yushishan Nb-Ta-(Zr-Hf-REE)and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits.Several most important controlling factors for rare metal mineral deposits are discussed,including geochemical behaviors and sources of the rare metals,highly evolved magmatic fractionation,and structural controls such as the metamorphic core complex setting,with a revised conceptual model for the latter.展开更多
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金supported in part by the National Natural Science Foundation of China under Grant 6237319in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX230479.
文摘Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金supported by the National Laboratory of Space Intelligent Control(No.HTKJ2023KL502007)the Chinese Government Scholarship(CSC)。
文摘In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.
基金supported by Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0733)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110753)+2 种基金China Postdoctoral Science Foundation(No.2022M722583)China Industry-UniversityResearch Innovation Foundation(No.2022IT188)National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(No.20220001068001)。
文摘The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the Beijing Municipal Science&Technology Commission China(No.Z19111000270000)the National Natural Science Foundation of China(Nos.62203050,51774042).
文摘Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.
基金supported in part by the National Key Research and Development Program of China(No.2022YFE0133100)in part by the National Natural Science Foundation of China(No.62203089)in part by the Sichuan Science and Technology Program(Nos.24NSFSC1362,2020YFSY0012).
文摘Both safety and stability are primary performance criteria for multi-unmanned aerial vehicle(multi-UAV)systems in many coordination tasks.Existing approaches often consider safety and stability separately.It is necessary and urgent to develop a safety-stability control strategy to merge these two performance criteria.In this paper,a unified approach is developed to consider safety and stability for multi-UAV formation control.The stability criterion is represented by a Lyapunov function and safety criterion is represented by a barrier function and then a relaxed converse control Lyapunov-barrier theorem is obtained.With the help of a relaxed converse control Lyapunov-barrier function(RCCLBF),a distributed safety-stability formation control strategy is proposed for the multi-UAV system.By transforming the solution of RCCLBF to a Lyapunovlike stabilization problem,we show that the proposed formation control strategy can drive the UAVs staying within a specified safe set.Simulation results are provided to validate the proposed safety-stability formation control strategy.
基金supported by the National Natural Science Foundation of China(Nos.62222313,62173275,62327809,62303381,and 62303312)in part by the China Postdoctoral Science Foundation(No.2023M732225).
文摘The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(Nos.62173303 and 62273307)Natural Science Foundation of Zhejiang Province(No.LQ24F030023)。
文摘A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.
基金supported by the National Natural Science Foundation of China under 62173172.
文摘This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported,in part,the Shenzhen Medical Research Funds(B2402033)the Shenzhen Fundamental Research Program(JCYJ20220818100617036)+3 种基金the National Natural Science Foundation of China Grants(82250710175,82261160395,82430078,82230081)the Guangdong Provincial Science and Technology Innovation Council Grant(2017B030301018)the National Key Research and Development Program of China Grant(2019YFA0906004)the China Postdoctoral Science Foundation(2021M691435).
文摘The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis.Vinculin loss severely impaired osteocyte adhesion and dendrite formation.Deleting vinculin using the mouse 10-kb Dmp1-Cre transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine,but not in the skull,in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption.Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice.Vinculin knockdown increases,while vinculin overexpression decreases,sclerostin expression in osteocytes without impacting expression of Mef2c,a major transcriptional regulator of the Sost gene,which encodes sclerostin.Vinculin interacts with Mef2c and retains the latter in the cytoplasm.Thus,vinculin loss enhances Mef2c nuclear translocation and binding to the Sost enhancer ECR5 to promote sclerostin expression in osteocytes and reduces bone formation.Consistent with this notion,deleting Sost expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice.Finally,we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss.Thus,we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.
文摘Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.
基金supported by the National Natural Science Foundation of China(No.61374048)
文摘In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the attitudes of the quadrotor UAVs.Separating the model into a translational subsystem and a rotational subsystem,an intermediary control input is introduced to track a desired velocity and extract desired orientations.Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs,the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping,by which the bounded control thrust and the desired orientation can be extracted.Thereafter,an adaptive control torque input is designed for the rotational subsystem to track the desired orientation.With the proposed control scheme,the desired velocity is tracked and a desired formation shape is built up.Global stability of the closed-loop system is proven via Lyapunov-based stability analysis.Numerical simulation results are presented to illustrate the effectiveness of the proposed control scheme.
基金sponsored by National Natural Science Foundation of China (Nos. 61673327, 51606161, 11602209, 91441128)Natural Science Foundation of Fujian Province of China (No. 2016J06011)China Scholarship Council (No. 201606310153)
文摘This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金supported in part by the National Natural Science Foundation of China(No.61803009)Fundamental Research Funds for the Central Universities,China(No.YWF-19-BJ-J-205)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.
基金financially supported by the National Key R&D Program of China(grant no.2017YFC0602405)the National Natural Science Foundation of China(grant no.42030811)。
文摘Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt;in the Middle Qilian,South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt;in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt,and in the Northeastern Jiangxi,Northwestern Jiangxi,and Southern Hunan regions in South China.Major ore-forming epochs include Indosinian(mostly 200-240 Ma,in particular in western China)and the Yanshanian(mostly 120-160 Ma,in particular in South China).In addition,Bayan Obo,Inner Mongolia,northeastern China,with a complex formation history,hosts the largest REE and Nb deposits in China.There are six major rare metal mineral deposit types in China:Highly fractionated granite;Pegmatite;Alkaline granite;Carbonatite and alkaline rock;Volcanic;and Hydrothermal types.Two further types,namely the Leptynite type and Breccia pipe type,have recently been discovered in China,and are represented by the Yushishan Nb-Ta-(Zr-Hf-REE)and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits.Several most important controlling factors for rare metal mineral deposits are discussed,including geochemical behaviors and sources of the rare metals,highly evolved magmatic fractionation,and structural controls such as the metamorphic core complex setting,with a revised conceptual model for the latter.