高能动力电池是供配电系统的核心储能模块,针对高能动力电池的应用构建了二阶等效电路模型。在等效电路模型的基础上,提出联合递推最小二乘(Recursive Least Squares,RLS)法和扩展卡尔曼滤波(Extended Kalman Filter,EKF)的荷电状态(Sta...高能动力电池是供配电系统的核心储能模块,针对高能动力电池的应用构建了二阶等效电路模型。在等效电路模型的基础上,提出联合递推最小二乘(Recursive Least Squares,RLS)法和扩展卡尔曼滤波(Extended Kalman Filter,EKF)的荷电状态(Stage of Charge,SOC)算法,并在其基础上改进为基于温度补偿的联合RLS法和EKF融合的SOC算法。基于MATLAB软件,设计改进前和改进后联合算法的仿真验证程序,并对结果进行了比较分析。仿真结果表明,基于温度补偿的联合算法可实现当SOC处于(0.25,1)的区域内,相对误差基本小于5%,验证了所提出的建模方法和求解方法的有效性。展开更多
为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理...为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。展开更多
文摘高能动力电池是供配电系统的核心储能模块,针对高能动力电池的应用构建了二阶等效电路模型。在等效电路模型的基础上,提出联合递推最小二乘(Recursive Least Squares,RLS)法和扩展卡尔曼滤波(Extended Kalman Filter,EKF)的荷电状态(Stage of Charge,SOC)算法,并在其基础上改进为基于温度补偿的联合RLS法和EKF融合的SOC算法。基于MATLAB软件,设计改进前和改进后联合算法的仿真验证程序,并对结果进行了比较分析。仿真结果表明,基于温度补偿的联合算法可实现当SOC处于(0.25,1)的区域内,相对误差基本小于5%,验证了所提出的建模方法和求解方法的有效性。
文摘为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。