Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relativel...Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relatively small spatial extents,the potential drivers ofβ-diversity along latitudinal gradients are still not well understood at larger spatial extents.In this study,we determined whether treeβ-diversity is correlated with latitude in forests of southeastern China,and if so,what ecological processes contribute to these patterns of treeβ-diversity.We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents.We delineated regional communities comprising multiple nearby national forest inventory(NFI)plots around random focal plots.The number of NFI plots in a regional community served as a surrogate for spatial extent.We also used a null model to simulate randomly assembled communities and quantify the deviation(β-deviation)between observed and expectedβ-diversity.We found thatβ-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents.In addition,latitudinal patterns ofβ-deviation were explained by the degree of species spatial aggregation.We also identified environmental factors that driveβ-deviation in these forests,including precipitation,seasonality,and temperature variation.At larger spatial extents,these environmental variables explained up to 84%of theβ-deviation.Our results reinforce that ecological processes are scale-dependent and collectively contribute to theβ-gradient in subtropical forests.We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.展开更多
The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have high...The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.展开更多
The spatial and temporal changes of landscape pattern and their driving forces in each functional zone of Nanling National Nature Reserve were analyzed based on the GIS and RS platform. The results showed that from 19...The spatial and temporal changes of landscape pattern and their driving forces in each functional zone of Nanling National Nature Reserve were analyzed based on the GIS and RS platform. The results showed that from 1988 to 2009, in respect of changes of Jandscape area, the main forest landscape accounted about 95% of the total area, of which evergreen broad-leaved forest had the largest area, accounting for more than 50% of the total area. The dominant landscape was coniferous forest. In respect of landscape fragmentation, the density index of land- scape in the whole area increased, and the degree of landscape fragmentation also increased. In the core area, the patch density decreased slightly, and the average patch area of each type of landscape increased; the degree of landscape fragmen- tation increased slightly. In the buffer area and the experimental area, the degree of landscape fragmentation increased. In terms of landscape diversity, the landscape pattern in the whole area became complex, and the diversity index of landscape in- creased and the degree of heterogeneity increased. In the core area, the diversity index of landscape increased slightly. In the buffer area, it increased significantly. In the experiment area, the diversity index reduced, and the degree of landscape het- erogeneity reduced. In the whole study area, the landscape tended to be diversified. The landscape pattern of the experimental area was consistent with that of the whole study area, and there was no obvious change in the buffer zone, while the landscape pattern in the core area developed towards the single direction.展开更多
Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics ...Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha(100 m × 100 m) permanent plot and all the trees with a diameter at breast height o more than 3 cm were measured and stem-mapped Ripley's K functions from the spatial-point-pattern analysis method were used to analyze the spatia distribution and associations. The results showed tha(1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay;(2) The overall spatia pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatia patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes;(3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.展开更多
For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhousha...For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhoushan, Zhejiang Province, we established a test area in the local Chinese pine community. Landsat5 TM images from 1991 and 2006 were integrated with auxiliary data from field investigation and spectral data as additional sources of information. A method of expert knowledge classifier was applied to establish the expert knowledge dataset of the main vegetation cover types from which we obtained a forest type distribution map. The spatial patterns and stability of the forest, before and after the invasion of the pine wood nematode, were analyzed in terms of community patterns. The results indicated that the predominant coniferous forest type changed to a mixed forest. As a result, the forest structure became complex and the interaction between coniferous forest patches became weakened over the period from 1991 to 2006. Therefore, the resistance of the forest eco-system to plant diseases and insect pests and the stability of forest eco-system enhanced.展开更多
Analyzing and understanding the structure and growth dynamics of forests at different stages is helpful to promote forest succession, restoration and management. Three spots representing three succession stages of spr...Analyzing and understanding the structure and growth dynamics of forests at different stages is helpful to promote forest succession, restoration and management. Three spots representing three succession stages of spruce-fir mixed forest(SF: polar-birch secondary forest, MF: spruce-fir mixed forest and PF: spruce-fir near primary forest) were established. Structure, growth dynamics during two growth seasons for dominant tree species, regeneration were examined, and a univariate O-ring function statistic was used to analyze the spatial patterns of main regeneration tree species. Results showed that,(1) composition of tree species, periodic annual increment(PAI) of the diameter at breast height(DBH), basal area for overstory trees and of ground diameter(DGH) for saplings, were significantly different with the succession;(2) the current species composition and regeneration dynamics of SF suggested a development towards spruce-fir mixed forests. Pioneer species like Betula platyphyllaa will gradually disappear while climax species, such as Abies nephrolepis, Pinus koraiensis, Picea koraiensis and Tilia amurensis will dominate forest stands;(3) Despite the highest volume occurring in PF, and saplings in it grew better than in the others, this forest type is unstable because of its unsustainable structure of DBH class and insufficient regeneration; and(4) MF had the most reasonable distribution of DBH class for adult trees(DBH > 5.0 cm) and DGH class for saplings(H ≥30 cm and DBH ≤5 cm), as well as an optimal volume increment. Limiting canopy opening size can lessen the physiological stress and promote the growth and competitive status of regeneration. Management implications for increasing the gaps and thus creating better growth conditions for understory saplings and facilitating forest succession were discussed.展开更多
In this paper,the quantitative relationship between the wild fruit communities and direct environmental factors is discussed on the basis of detailed data on landscape scale habitats obtained through field vegetation ...In this paper,the quantitative relationship between the wild fruit communities and direct environmental factors is discussed on the basis of detailed data on landscape scale habitats obtained through field vegetation investigation.The results from TWINSPAN and DCCA showed that:1) In the distribution sections of the wild fruit forest in the Keguqin Mountain region,the basic patterns characteristic of the different habitats are due to topographic factors,nutrients and moisture conditions;2) The elevation affected the most basic differentiation of plant communities in the study area,indicating that the elevation condition was the most important factor restricting the distribution of the wild fruit communities in the study area;3) The close relationship between the moisture content in the upper soil layer and the elevation reflected the influence of moisture conditions on both wild fruit and herb-layer communities;4) Nutrient differences not only indicated that the habitat conditions were different in themselves but also showed that the present nutrient conditions of the habitats were seriously affected by human activities.In summary,under complicated mountainous topographic conditions,the habitat conditions for the communities differed very significantly,and the combination of elevation,soil moisture content,total nitrogen,slope aspect,and pH value influenced and controlled the formation of community distribution patterns in the study area.展开更多
3S technology was applied to analyze spatio-temporal changes of landscape pattern in Nanling National Nature Reserve and the driving forces. The results showed that the study area was dominated by forest landscape fro...3S technology was applied to analyze spatio-temporal changes of landscape pattern in Nanling National Nature Reserve and the driving forces. The results showed that the study area was dominated by forest landscape from 1988 to 2009, accounting for 95% of the total area, among all forest landscapes, evergreen broadleaved forest accounted for the largest ratio(>50%). In terms of landscape fragmentation, landscape density index of the study area increased, landscape fragmentation was aggravated; patch density of core zone declined slightly, mean patch area of all landscape types increased, landscape fragmentation decreased slightly; buffer zone and experimental zone witnessed the aggravation of fragmentation. In terms of landscape diversity, landscape pattern of the study area became increasingly complex, diversity index increased, landscape heterogenization was enhanced; landscape diversity of the core zone increased slightly, that of the buffer zone increased greatly, but that of the experimental zone declined and landscape heterogenization reduced. Landscapes in the whole area grew more diversified, while landscape pattern of the core zone was simplified, that of the buffer zone witnessed slight changes, and that of the experimental zone kept consistent with that of the study area. In terms of driving forces of landscape pattern change, natural factors have contributed to the landscape changes in the study area, but human factors such as forest management, forest tourism, local residents an economic factors played a dominant role. With the increasing external interventions to the landscape pattern change, the contradiction between landscape eco-environment protection and resource development and utilization in Nanling National Nature Reserve will be increasingly sharpened.展开更多
基金supported by the National Natural Science Foundation of China(42271317)the Innovation Research Team Project of the Natural Science Foundation of Hainan Province(422CXTD515)。
文摘Latitudinal patterns of treeβ-diversity reveal important insights into the biogeographical processes that influence forest ecosystems.Although previous studies have extensively documentedβ-diversity within relatively small spatial extents,the potential drivers ofβ-diversity along latitudinal gradients are still not well understood at larger spatial extents.In this study,we determined whether treeβ-diversity is correlated with latitude in forests of southeastern China,and if so,what ecological processes contribute to these patterns of treeβ-diversity.We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents.We delineated regional communities comprising multiple nearby national forest inventory(NFI)plots around random focal plots.The number of NFI plots in a regional community served as a surrogate for spatial extent.We also used a null model to simulate randomly assembled communities and quantify the deviation(β-deviation)between observed and expectedβ-diversity.We found thatβ-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents.In addition,latitudinal patterns ofβ-deviation were explained by the degree of species spatial aggregation.We also identified environmental factors that driveβ-deviation in these forests,including precipitation,seasonality,and temperature variation.At larger spatial extents,these environmental variables explained up to 84%of theβ-deviation.Our results reinforce that ecological processes are scale-dependent and collectively contribute to theβ-gradient in subtropical forests.We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.
基金funded in part by Research on Intelligent Control System of Variable Fertilization of Deep Application Liquid Fertilizer(GXKS2022GKY003)Research on Vehicle Ranging System Based on Object Detection and Monocular Vision(2022KY0854).
文摘The spatial pattern of trees is an important feature of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unstable factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are susceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively transforming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theories of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pattern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pattern is effective.
文摘The spatial and temporal changes of landscape pattern and their driving forces in each functional zone of Nanling National Nature Reserve were analyzed based on the GIS and RS platform. The results showed that from 1988 to 2009, in respect of changes of Jandscape area, the main forest landscape accounted about 95% of the total area, of which evergreen broad-leaved forest had the largest area, accounting for more than 50% of the total area. The dominant landscape was coniferous forest. In respect of landscape fragmentation, the density index of land- scape in the whole area increased, and the degree of landscape fragmentation also increased. In the core area, the patch density decreased slightly, and the average patch area of each type of landscape increased; the degree of landscape fragmen- tation increased slightly. In the buffer area and the experimental area, the degree of landscape fragmentation increased. In terms of landscape diversity, the landscape pattern in the whole area became complex, and the diversity index of landscape in- creased and the degree of heterogeneity increased. In the core area, the diversity index of landscape increased slightly. In the buffer area, it increased significantly. In the experiment area, the diversity index reduced, and the degree of landscape het- erogeneity reduced. In the whole study area, the landscape tended to be diversified. The landscape pattern of the experimental area was consistent with that of the whole study area, and there was no obvious change in the buffer zone, while the landscape pattern in the core area developed towards the single direction.
基金supported by the National Natural Science Foundation of China (Grant No. 31300538, 31400540 and 31170587)the Special Foundation of Basic Scientific Research Professional Expenses in Northwest A&F University (Grant No. QN2013082)the Youth development projects of the second basic scientific research business expenses of Northwest A&F University (Grant No. 2452015335)
文摘Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha(100 m × 100 m) permanent plot and all the trees with a diameter at breast height o more than 3 cm were measured and stem-mapped Ripley's K functions from the spatial-point-pattern analysis method were used to analyze the spatia distribution and associations. The results showed tha(1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay;(2) The overall spatia pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatia patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes;(3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.
文摘For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhoushan, Zhejiang Province, we established a test area in the local Chinese pine community. Landsat5 TM images from 1991 and 2006 were integrated with auxiliary data from field investigation and spectral data as additional sources of information. A method of expert knowledge classifier was applied to establish the expert knowledge dataset of the main vegetation cover types from which we obtained a forest type distribution map. The spatial patterns and stability of the forest, before and after the invasion of the pine wood nematode, were analyzed in terms of community patterns. The results indicated that the predominant coniferous forest type changed to a mixed forest. As a result, the forest structure became complex and the interaction between coniferous forest patches became weakened over the period from 1991 to 2006. Therefore, the resistance of the forest eco-system to plant diseases and insect pests and the stability of forest eco-system enhanced.
基金co-supported by the "948" Project of the State Forestry Administration of China (Grant No. 2013-4-66)"The Twelfth Five-Year-Plan" of National Science and Technology for Rural Development in China (Grant No. 2012BAD22B0203)
文摘Analyzing and understanding the structure and growth dynamics of forests at different stages is helpful to promote forest succession, restoration and management. Three spots representing three succession stages of spruce-fir mixed forest(SF: polar-birch secondary forest, MF: spruce-fir mixed forest and PF: spruce-fir near primary forest) were established. Structure, growth dynamics during two growth seasons for dominant tree species, regeneration were examined, and a univariate O-ring function statistic was used to analyze the spatial patterns of main regeneration tree species. Results showed that,(1) composition of tree species, periodic annual increment(PAI) of the diameter at breast height(DBH), basal area for overstory trees and of ground diameter(DGH) for saplings, were significantly different with the succession;(2) the current species composition and regeneration dynamics of SF suggested a development towards spruce-fir mixed forests. Pioneer species like Betula platyphyllaa will gradually disappear while climax species, such as Abies nephrolepis, Pinus koraiensis, Picea koraiensis and Tilia amurensis will dominate forest stands;(3) Despite the highest volume occurring in PF, and saplings in it grew better than in the others, this forest type is unstable because of its unsustainable structure of DBH class and insufficient regeneration; and(4) MF had the most reasonable distribution of DBH class for adult trees(DBH > 5.0 cm) and DGH class for saplings(H ≥30 cm and DBH ≤5 cm), as well as an optimal volume increment. Limiting canopy opening size can lessen the physiological stress and promote the growth and competitive status of regeneration. Management implications for increasing the gaps and thus creating better growth conditions for understory saplings and facilitating forest succession were discussed.
基金National Technology Support Program (Grant Nos. 2007BAC17B06,2007BAC16B06,2006BAD26B0901)National Natural Science Foundation(Grant Nos. 31060062,110140101)
文摘In this paper,the quantitative relationship between the wild fruit communities and direct environmental factors is discussed on the basis of detailed data on landscape scale habitats obtained through field vegetation investigation.The results from TWINSPAN and DCCA showed that:1) In the distribution sections of the wild fruit forest in the Keguqin Mountain region,the basic patterns characteristic of the different habitats are due to topographic factors,nutrients and moisture conditions;2) The elevation affected the most basic differentiation of plant communities in the study area,indicating that the elevation condition was the most important factor restricting the distribution of the wild fruit communities in the study area;3) The close relationship between the moisture content in the upper soil layer and the elevation reflected the influence of moisture conditions on both wild fruit and herb-layer communities;4) Nutrient differences not only indicated that the habitat conditions were different in themselves but also showed that the present nutrient conditions of the habitats were seriously affected by human activities.In summary,under complicated mountainous topographic conditions,the habitat conditions for the communities differed very significantly,and the combination of elevation,soil moisture content,total nitrogen,slope aspect,and pH value influenced and controlled the formation of community distribution patterns in the study area.
基金Sponsored by Digital Monitoring,Management and Protection Program of Nanling National Nature Reserve(GDHS13SGHG05025)
文摘3S technology was applied to analyze spatio-temporal changes of landscape pattern in Nanling National Nature Reserve and the driving forces. The results showed that the study area was dominated by forest landscape from 1988 to 2009, accounting for 95% of the total area, among all forest landscapes, evergreen broadleaved forest accounted for the largest ratio(>50%). In terms of landscape fragmentation, landscape density index of the study area increased, landscape fragmentation was aggravated; patch density of core zone declined slightly, mean patch area of all landscape types increased, landscape fragmentation decreased slightly; buffer zone and experimental zone witnessed the aggravation of fragmentation. In terms of landscape diversity, landscape pattern of the study area became increasingly complex, diversity index increased, landscape heterogenization was enhanced; landscape diversity of the core zone increased slightly, that of the buffer zone increased greatly, but that of the experimental zone declined and landscape heterogenization reduced. Landscapes in the whole area grew more diversified, while landscape pattern of the core zone was simplified, that of the buffer zone witnessed slight changes, and that of the experimental zone kept consistent with that of the study area. In terms of driving forces of landscape pattern change, natural factors have contributed to the landscape changes in the study area, but human factors such as forest management, forest tourism, local residents an economic factors played a dominant role. With the increasing external interventions to the landscape pattern change, the contradiction between landscape eco-environment protection and resource development and utilization in Nanling National Nature Reserve will be increasingly sharpened.